已知点M在椭圆D:上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为的正三角形.
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若=2,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|·|GK|=3|RF1|·|F1S|的直线GK是否存在?请说明理由.
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
2
| ||
3 |
QP |
PF |
3x2 |
a2 |
4y2 |
b2 |
查看答案和解析>>
科目:高中数学 来源:山东省模拟题 题型:解答题
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
x2 |
a2 |
y2 |
b2 |
2
| ||
3 |
QP |
PF |
3x2 |
a2 |
4y2 |
b2 |
查看答案和解析>>
科目:高中数学 来源:2012年山东省青岛市高考数学一模试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com