精英家教网 > 高中数学 > 题目详情

【题目】关于函数,下列说法正确的是______(填上所有正确命题序号).(1)的极大值点 ;(2)函数有且只有1个零点;(3)存在正实数,使得恒成立 ;(4)对任意两个正实数,且,若,则.

【答案】(2)(4)

【解析】

利用导数求得函数的单调性与极值(最值),即可判定(1)(4),构造新函数,求得新函数的单调性,即可判定(2),由,可得,令,取得函数的的单调性与最值,即可判定(3),得到答案..

由题意,函数,则

可得函数在区间上单调递减,在区间上单调递增,

所以当时,函数取得极小值,所以(1)不正确;

由函数,所以

可得函数在区间上单调递减,

时,,当时,,所以函数有且只有1个零点,所以(2)正确;

,可得,令,则

,则

所以当时,单调递减,

时,单调递增,所以,所以

所以上单调递减,函数无最小值,

所以不存在正整数,使得恒成立,所以(3)不正确;

对于任意两正实数,且

由(1)可知函数在区间上单调递减,在区间上单调递增,

,则,所以(4)正确.

证明如下:不妨设 ,则

,则

原式,则

所以上是减函数,

所以,所以

又因为上单调递增,所以,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(I)讨论的单调性;

II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列是单调递增数列,且的等差中项为的等比中项为16.

(Ⅰ)求数列的通项公式;

(Ⅱ)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的离心率为,焦距为.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,动直线 交椭圆两点, 是椭圆上一点,直线的斜率为,且 是线段延长线上一点,且 的半径为 的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段为垂足.当点在圆上运动时,线段的中点形成轨迹

1)求轨迹的方程;

2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论上的零点个数;

(2)当时,若存在,使,求实数的取值范围.(为自然对数的底数,其值为2.71828……)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为常数.

时,设函数,判断函数上是增函数还是减函数,并说明理由;

设函数,若函数有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的极值;

(2)是否存在实数,使得当时,函数的最大值为?若存在,取实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图的空间几何体中,四边形为边长为2的正方形,平面,且.

1)求证:平面平面

2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案