精英家教网 > 高中数学 > 题目详情
8.掷2个骰子,至少有一个1点的概率为$\frac{11}{36}$.(用数字作答)

分析 根据题意,首先利用列表法,列举出所有的情况,可得全部的情况数目以及有一个骰子点数为1的情况数目,由古典概型公式计算可得答案.

解答 解:同时掷两个质地均匀的骰子的情况有:

 123456
1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)
2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)
3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)
4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)
5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)
6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)
一共36种可能,将至少有一个骰子点数为1记为事件A,则满足该事件条件的结果共有11个,
则至少有一个1点的概率P(A)=$\frac{11}{36}$;
故答案为:$\frac{11}{36}$.

点评 本题考查古典概型的计算,本题中找到两个骰子点数相同的情况数和至少有一个骰子点数为3还有两个骰子的点数的和为8的情况数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.过点(1,2)作圆x2+y2-2x+6y+8=0的切线,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和为Sn,且a4=5,S9=54.
(1)求数列{an}的通项公式与Sn
(2)若bn=$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=sin($\frac{π}{3}-\frac{x}{2}$)的最小正周期是(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.欲将正六边形的各边和各条对角线都染为n种颜色之一,使得以正六边形的任何3个顶点作为顶点的三角形有3种不同颜色的边,并且不同的三角形使用不同的3色组合,则n的最小值是7?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.cos65°•sin85°+sin65°•sin5°=$\frac{1}{2}$,sin15°•cos15°=$\frac{1}{4}$,2cos2$\frac{π}{12}$-1=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对某电子元件进行寿命追踪调查,情况如下.
寿命(h)100~200200~300300~400400~500500~600
个  数2030804030
(1)画出频率分布直方图;
(2)估计电子元件寿命在400h以上的在总体中占的比例;
(3)估计电子元件寿命的众数,中位数及平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.正三棱锥V-ABC的底面边长是a,侧面与底面成60°的二面角.求
(1)棱锥的侧棱长;
(2)侧棱与底面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$y=\frac{1}{\sqrt{{-x}^{2}+2x+3}}$的单调减区间是(  )
A.(1,3)B.(-∞,1)C.(-1,1)D.[-1,1]

查看答案和解析>>

同步练习册答案