精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数.

1为偶函数,试判断的奇偶性;

2)若方程有两个不相等的实根,当时判断上的单调性;

3)当时,问是否存在x的值,使满足的任意实数a,不等式恒成立?并说明理由.

【答案】(1)为奇函数(2)答案不唯一,具体见解析(3)存在,详见解析

【解析】

1)根据偶函数的定义可知,可求出的值,求出的定义域看是否对称,然后根据奇偶性定义进行判定;

2有两个不相等的实根可转化成,可判定对称轴的范围,从而确定函数上的单调性;

3)不等式恒成立可转化成对于时恒成立,建立不等式组,解之即可求出所求.

解:(1)若为偶函数,有,则,定义域为,且,所以为奇函数.

2)由,整理得:,且,即,又的对称轴为

所以当时,上为增函数;当时,上为减函数.

3)由,即,有

由已知它对于时上面不等式恒成立,则有

解得:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:t为参数),直线l与曲线C分别交于两点.

1)写出曲线C和直线l的普通方程;

2)若点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的长轴长与焦距比为21,左焦点F(﹣20),一定点为P(﹣80).

1)求椭圆E的标准方程;

2)过P的直线与椭圆交于P1P2两点,设直线P1FP2F的斜率分别为k1k2,求证:k1+k2=0

3)求△P1P2F面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,平面分别为的中点.

1)证明:平面

2)若与平面所成的角为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场规划将果树种在正方形的场地内.为了保护果树不被风吹,决定在果树的周围种松树. 在下图里,你可以看到规划种植果树的列数(n),果树数量及松树数量的规律:

1)按此规律,n = 5时果树数量及松树数量分别为多少;并写出果树数量,及松树数量关于n的表达式

2)定义: 增加的速度;现农场想扩大种植面积,问:哪种树增加的速度会更快?并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体中,AD=2AB=AE=1M为矩形AEHD内的一点,如果∠MGF=MGHMG和平面EFG所成角的正切值为那么点M到平面EFGH的距离是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为,斜率为k的直线l与椭圆M有两个不同的交点AB

1)求椭圆M的方程;

2)设P(﹣20),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D,若CD与点共线,求斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,过点.

1)求椭圆的标准方程;

2)设椭圆的右焦点为F,定点,过点F且斜率不为零的直线l与椭圆交于AB两点,以线段AP为直径的圆与直线的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案