精英家教网 > 高中数学 > 题目详情
18.已知三棱锥O-ABC中,A、B、C三点在以O为球心的球面上,若AB=BC=1,∠ABC=120°,三棱锥O-ABC的体积为$\frac{\sqrt{5}}{4}$,则球O的表面积为(  )
A.$\frac{32}{3}$πB.16πC.64πD.544π

分析 求出底面三角形的面积,利用三棱锥的体积求出O到底面的距离,求出底面三角形的所在平面圆的半径,通过勾股定理求出球的半径,即可求解球的体积.

解答 解:三棱锥O-ABC,A、B、C三点均在球心O的表面上,且AB=BC=1,∠ABC=120°,AC=$\sqrt{3}$,

∴S△ABC=$\frac{1}{2}×1×1×sin120°$=$\frac{\sqrt{3}}{4}$,
∵三棱锥O-ABC的体积为$\frac{\sqrt{5}}{4}$,△ABC的外接圆的圆心为G,∴OG⊥⊙G,
外接圆的半径为:GA=$\frac{\sqrt{3}}{2sin120°}$=1,
∴$\frac{1}{3}×\frac{\sqrt{3}}{4}×$OG=$\frac{\sqrt{5}}{4}$,
∴OG=$\sqrt{15}$,
球的半径为:$\sqrt{15+1}$=4.
球的表面积:4π42=64π.
故选:C.

点评 本题考查球的表面积的求法,球的内含体与三棱锥的关系,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示,AC=BC=1,∠ACB-90°,PA⊥平面ABC,CE∥PA,PA=2CE=2,
(1)求证:平面EPB⊥平面APB
(2)求二面角A-BE-P的正弦.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,平面四边形ABCD中,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°,则△ADC的面积S为$\frac{3+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)是一次函数,且f(f(x))=4x+1,则f(x)=$2x+\frac{1}{3},或-2x-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-2sin2x+2$\sqrt{3}$sinxcosx+1.
(1)求f(x)的最小正周期及单调减区间;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.tan$\frac{11π}{6}$的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.-$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的前n项和Sn=3n2+8n(n∈N*),则{an}的通项公式为(  )
A.an=6n+8B.an=6n+5C.an=3n+8D.an=3n+5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若正整数N除以正整数m后的余数为n,则记为N=n(bmodm),例如11≡4(bmod7),如图所示的程序框图的算法源于我国古代闻名中外的《中国剩余定理》,执行该程序框图,则输出的n=(  )
A.16B.17C.19D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{2x+6,x∈[1,2]}\\{x+7,x∈[-1,1]}\end{array}\right.$,则f(x)的最大值与最小值的差为4.

查看答案和解析>>

同步练习册答案