精英家教网 > 高中数学 > 题目详情
知椭圆的左右焦点为F1,F2,离心率为,以线段F1 F2为直径的圆的面积为,   (1)求椭圆的方程;(2) 设直线l过椭圆的右焦点F2(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.
(1)(2).

试题分析:(1)由以F1 F2为直径的圆的面积为,确定c,由离心率确定a;(2)联立方程组,结合韦达定理,得中点坐标,再求解.
试题解析: (1)由离心率为得: =        ①
又由线段F1 F2为直径的圆的面积为得: c2=, c2=1      ②     2分
由①, ②解得a=,c=1,∴b2=1,∴椭圆方程为       4分
(2)由题意,,设l的方程为,代入椭圆方程,整理得,因为l过椭圆右焦点,所以l与椭圆交与不同两点A,B.
,中点为,则,,
,所以AB垂直平分线方程为
令y=0,得,由于.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.

(Ⅰ)若,求抛物线的方程;
(Ⅱ)求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线与直线相切,是抛物线上两个动点,为抛物线的焦点,的垂直平分线轴交于点,且.
(1)求的值;
(2)求点的坐标;
(3)求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H

(Ⅰ)设EF中点为,求证:O、、B、P四点共圆
(Ⅱ)求证:OG =OH.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数,).
(Ⅰ)化曲线的极坐标方程为直角坐标方程;
(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线x2=2py(p>0)的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B在x轴上的正射影分别为D,C.若梯形ABCD的面积为12,则P="__________" .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

长为2的线段的两个端点在抛物线上滑动,则线段中点轴距离的最小值是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是抛物线的焦点,是该抛物线上的两点,且,则线段的中点到轴的距离为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

准线方程为x=1的抛物线的标准方程是(   )
A.B.C. D.

查看答案和解析>>

同步练习册答案