精英家教网 > 高中数学 > 题目详情

【题目】已知函数,对任意,都有.

讨论的单调性;

存在三个不同的零点时,求实数的取值范围.

【答案】(1) 当时,上单调递减;当时,上单调递减,上单调递增.;(2)

【解析】

1)根据可得,得到,求导后,分别在两种情况下讨论导函数符号,得到单调性;(2)根据(1)中所求单调性,否定的情况;在时,首先求得为一个零点;再利用零点存在性定理求解出中存在一个零点;根据,可确定另一个零点,从而可知满足题意.

(1)由,得

时,即时,单调递减

,即时,有两个零点

零点为:

开口向下

时,单调递减

时,单调递增

时,单调递减

综上所述,当时,上单调递减;当时,上单调递减,上单调递增

(2)由(1)知当时,单调递减,不可能有三个不同的零点;

时,上单调递减,上单调递增

,又,有

上单调递增,

单调递增

,求得

时,单调递减,

上单调递增

由零点存在性定理知在区间有一个根,设为:

,得的另一个零点

故当时,存在三个不同的零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《郑州市城市生活垃圾分类管理办法》已经政府常务会议审议通过,自2019121日起施行.垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.所谓垃圾其实都是资源,当你放错了位置时它才是垃圾.某企业在市科研部门的支持下进行研究,把厨余垃圾加工处理为一种可销售的产品.已知该企业每周的加工处理量最少为75吨,最多为100吨.周加工处理成本y(元)与周加工处理量x(吨)之间的函数关系可近似地表示为,且每加工处理一吨厨余垃圾得到的产品售价为16元.

(Ⅰ)该企业每周加工处理量为多少吨时,才能使每吨产品的平均加工处理成本最低?

(Ⅱ)该企业每周能否获利?如果获利,求出利润的最大值;如果不获利,则需要市政府至少补贴多少元才能使该企业不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(

A.先把高二年级的2000名学生编号:12000,再从编号为150的学生中随机抽取1名学生,其编号为,然后抽取编号为,…的学生,这种抽样方法是分层抽样法

B.线性回归直线不一定过样本中心

C.若一个回归直线方程为,则变量每增加一个单位时,平均增加3个单位

D.若一组数据248的平均数是5,则该组数据的方差也是5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,右顶点为A,上顶点为B,且满足向量

(1)若A,求椭圆的标准方程;

(2)设P为椭圆上异于顶点的点,以线段PB为直径的圆经过F1,问是否存在过F2的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:

空调类

冰箱类

小家电类

其它类

营业收入占比

净利润占比

则下列判断中不正确的是( )

A. 该公司2018年度冰箱类电器营销亏损

B. 该公司2018年度小家电类电器营业收入和净利润相同

C. 该公司2018年度净利润主要由空调类电器销售提供

D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为为参数,在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线的极坐标方程为

写出的普通方程和的直角坐标方程;

相交于AB两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是正方形, 平面 分别为 的中点.

1)求证: 平面

2)求平面与平面所成锐二面角的大小;

3)在线段上是否存在一点,使直线与直线所成的角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆的四个顶点构成的四边形面积为.

1)求椭圆的方程;

2)若是椭圆上的一点,过且斜率等于的直线与椭圆交于另一点,点关于原点的对称点为.面积的最大值及取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[5565),[6575),[7585),[8595]分组).

分组

频数

[5565

2

[6575

4

[7585

10

[8595]

4

合计

20

第一车间样本频数分布表

(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;

(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)

(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案