精英家教网 > 高中数学 > 题目详情

【题目】如图,在直四棱柱A1B1C1D1﹣ABCD中,当底面四边形ABCD满足条件 时,有A1C⊥B1D1 . (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)

【答案】AC⊥BD
【解析】解:∵四棱柱A1B1C1D1﹣ABCD是直棱柱,
∴B1D1⊥A1A,若A1C⊥B1D1
则B1D1⊥平面A1AC1C
∴B1D1⊥AC,
又由B1D1∥BD,
则有BD⊥AC,
反之,由BD⊥AC亦可得到A1C⊥B1D1
所以答案是:BD⊥AC.
【考点精析】通过灵活运用空间中直线与直线之间的位置关系,掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABC﹣A1B1C1的各棱长相等,点D是棱CC1的中点,则AA1与面ABD所成角的大小是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设四棱锥P-ABCD的底面不是平行四边形,用平面去截此四棱锥,使得截面是平行四边形,则这样的平面( )
A.不存在
B.有且只有1个
C.恰好有4个
D.有无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n是两条不同直线,是两个不同平面,则下列命题正确的是
A.若垂直于同一平面,则平行
B.若m,n平行于同一平面,则m与n平行
C.若不平行,则在内不存在与平行的直线
D.若m,n不平行,则m与n不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

平面直角坐标系xOy中,曲线C.直线l经过点Pm0),且倾斜角为O为极点,以x轴正半轴为极轴,建立极坐标系.

)写出曲线C的极坐标方程与直线l的参数方程;

)若直线l与曲线C相交于AB两点,且|PA·PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1 过点P且离心率为

(1)求C1的方程;

(2)若椭圆C2过点P且与C1有相同的焦点,直线lC2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.
(Ⅰ)证明:AA1⊥BC;
(Ⅱ)求AA1的长;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆上的一点与两个焦点构成的三角形周长为.

(1)求椭圆的方程;

(2)已知直线与椭圆相交于两点.

①若线段中点的横坐标为,求的值;

②在轴上是否存在点,使为定值?若是,求点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,∠ACB90°2ACAA1BC2.若二面角B1DCC1的大小为60°,则AD的长为( )

A. B. C. 2 D.

查看答案和解析>>

同步练习册答案