精英家教网 > 高中数学 > 题目详情
如图,在四棱锥O ­ABCD中,底面ABCD为菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证:(1)平面BDO⊥平面ACO;(2)EF∥平面OCD.
见解析

证明 (1)∵OA⊥平面ABCD,BD?平面ABCD,所以OA⊥BD,
∵ABCD是菱形,∴AC⊥BD,又OA∩AC=A,∴BD⊥平面OAC,
又∵BD?平面OBD,∴平面BDO⊥平面ACO.
(2)取OD中点M,连接EM,CM,则ME∥AD,ME=AD,

∵ABCD是菱形,∴AD∥BC,AD=BC,
∵F为BC的中点,∴CF∥AD,CF=AD,
∴ME∥CF,ME=CF.∴四边形EFCM是平行四边行,
∴EF∥CM,
又∵EF?平面OCD,CM?平面OCD.
∴EF∥平面OCD.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知abc是三条互不重合的直线,αβ是两个不重合的平面,给出
四个命题:①abbα,则aα;②ab?αaβbβ,则αβ;③aαaβ,则αβ;④aαbα,则ab.
其中正确的命题个数是 (  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,M,N分别是棱C1D1,C1C的中点.以下四个结论:

①直线AM与直线C1C相交;
②直线AM与直线BN平行;
③直线AM与直线DD1异面;
④直线BN与直线MB1异面.
其中正确结论的序号为   .(注:把你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面,直线,且有,则下列四个命题正确的个数为(    )
①若;②若;③若;④若
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面四个命题:
①“直线a∥直线b”的充分条件是“直线a平行于直线b所在的平面”;
②“直线l⊥平面α”的充要条件是“直线垂直平面α内无数条直线”;
③“直线a,b不相交”的必要不充分条件是“直线a,b为异面直线”;
④“平面α∥平面β”的必要不充分条件是“平面α内存在不共线三点到平面β的距离相等”.
其中为真命题的序号是(  )
A.①②B.②③C.③④D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设l,m是两条不同的直线,α是一个平面,有下列四个命题:
①若l⊥α,m?α,则l⊥m;②若l⊥α,l∥m,则m⊥α;
③若l∥α,m?α,则l∥m;④若l∥α,m∥α,则l∥m.
则其中正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

l是直线,αβ是两个不同的平面 (  ).
A.若lαlβ,则αβ
B.若lαlβ,则αβ
C.若αβlα,则lβ
D.若αβlα,则lβ

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体中,,点的中点,点上,若,则线段的长度等于______

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面α,β,γ,直线l,m满足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么①m⊥β;②l⊥α;③β⊥γ;④α⊥β.
由上述条件可推出的结论有________(请将你认为正确的结论的序号都填上).

查看答案和解析>>

同步练习册答案