精英家教网 > 高中数学 > 题目详情

【题目】已知圆经过点,圆的圆心在圆的内部,且直线被圆所截得的弦长为.点为圆上异于的任意一点,直线轴交于点,直线轴交于点.

(1)求圆的方程

(2)求证: 为定值.

【答案】(1);(2)见解析.

【解析】

试题分析:(1)首先根据条件设出圆心及半径,然后利用弦长公式求得半径,再利用点到直线的距离公式求得圆心,从而求得圆的方程;(2)直线的斜率不存在可直接求出定值,直线与直线的斜率存在时,设点,由此得到直线的方程与的方程,从而求得点的坐标,进而利用向量数量积公式求出定值.

试题解析:(1) 易知点在线段的中垂线上,故可设,圆的半径为

直线被圆所截得的弦长为,且到直线 的距离,或.

又圆的圆心在圆的内部,

,圆的方程.

(2)证明: 当直线的斜率不存在时,. 当直线与直线的斜率存在时,

,直线的方程为,令.

直线的方程为, .

,

为定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:数列对一切正整数均满足,称数列凸数列,以下关于凸数列的说法:

等差数列一定是凸数列;

首项,公比的等比数列一定是凸数列;

若数列为凸数列,则数列是单调递增数列;

若数列为凸数列,则下标成等差数列的项构成的子数列也为凸数列

其中正确说法的序号是_____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

(1)求的方程;

(2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于空间直角坐标系中的一点,有下列说法:

①点到坐标原点的距离为

的中点坐标为

③点关于轴对称的点的坐标为

④点关于坐标原点对称的点的坐标为

⑤点关于坐标平面对称的点的坐标为.

其中正确的个数是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五棱锥中,平面,, 是等腰三角形.

(1)求证:平面平面

2求侧棱上是否存在点,使得与平面所成角大小为,若存在,求出点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

利润

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测月和月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过万?

相关公式: ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

I)讨论函数的单调性;

II)若,证明:对任意,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,焦点 为坐标原点,直线(不垂直轴)过点且与抛物线交于两点,直线的斜率之积为.

(1)求抛物线的方程;

(2)若为线段的中点,射线交抛物线于点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60,第二组[60,70,…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.

若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;

从测试成绩在[50,60[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.

查看答案和解析>>

同步练习册答案