【题目】已知函数.
(1)求函数f(x)在[0,π]上的单调递减区间;
(2)在锐角△ABC的内角A,B,C所对边为a,b,c,已知f(A)=﹣1,a=2,求△ABC的面积的最大值.
科目:高中数学 来源: 题型:
【题目】如图,在郊野公园的景观河的两岸,、是夹角为120°的两条岸边步道(长度均超过千米),为方便市民观光游览,现准备在河道拐角处的另一侧建造一个观景台,在两条步道、上分别设立游客上下点、,从、到观景台建造两条游船观光线路、,测得千米.
(1)求游客上下点、间的距离;
(2)若,设,求两条观光线路与之和关于的表达式,并求其最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线()上的两个动点和,焦点为F.线段AB的中点为,且A,B两点到抛物线的焦点F的距离之和为8.
(1)求抛物线的标准方程;
(2)若线段AB的垂直平分线与x轴交于点C,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是偶函数,且在R上有导函数,若对都有,则关于函数的四个判断:①若函数在处有定义,则;②;③是周期函数;④若函数在处有定义,则.其中正确的判断有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数有下述四个结论:
①函数的图象把圆的面积两等分;
②是周期为的函数;
③函数在区间上有个零点;
④函数在区间上单调递减.
则正确结论的序号为_______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)( )
A.2020年6月B.2020年7月C.2020年8月D.2020年9月
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,是椭圆:的左、右焦点,离心率为,,是平面内两点,满足,线段的中点在椭圆上,周长为12.
(1)求椭圆的方程;
(2)若过的直线与椭圆交于,,求(其中为坐标原点)的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com