【题目】动点在椭圆上,过点作轴的垂线,垂足为,点满足,已知点的轨迹是过点的圆.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点(,在轴的同侧),,为椭圆的左、右焦点,若,求四边形面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知正四棱锥的底面边长为高为其内切球与面切于点,球面上与距离最近的点记为,若平面过点,且与平行,则平面截该正四棱锥所得截面的面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥ABCD中,和都是等边三角形,平面PAD平面ABCD,且,.
(1)求证:CDPA;
(2)E,F分别是棱PA,AD上的点,当平面BEF//平面PCD时,求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,,为椭圆上两点,圆.
(1)若轴,且满足直线与圆相切,求圆的方程;
(2)若圆的半径为2,点,满足,求直线被圆截得弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点在椭圆上,过点作轴的垂线,垂足为,点满足,已知点的轨迹是过点的圆.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点(,在轴的同侧),,为椭圆的左、右焦点,若,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,底面ABC,,,,D,E分别为棱BC,PC的中点,点F在棱PA上,设.
(1)当时,求异面直线DF与BE所成角的余弦值;
(2)试确定t的值,使二面角C-EF-D的平面角的余弦值为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列两个命题,命题甲:平面α与平面β相交;命题乙:相交直线l,m都在平面α内,并且都不在平面β内,直线l,m中至少有一条与平面β相交.则甲是乙的( )
A.充分且必要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com