精英家教网 > 高中数学 > 题目详情

【题目】y=f(t)是某港口水的深度y()关于时间t(小时)的函数,其中.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:

t

0

3

6

9

12

15

18

21

24

y

12

15.1

12.1

9.1

12

14.9

11.9

9

12.1

经长期观察,函数y=f(t)的图象可以近似地看成函数的图象.⑴求的解析式;⑵设水深不小于米时,轮船才能进出港口。某轮船在一昼夜内要进港口靠岸办事,然后再出港。问该轮船最多能在港口停靠多长时间?

【答案】16.

【解析】试题分析:(1)根据表中的数据,求得的值,进而求得的值,即可得到函数的解析式;

⑵由 ,求得的范围,即可轮船最多能在港口停靠的时间.

试题解析:

解:⑴

∴轮船可以在时进港,在时出港,最多停靠时间为小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a1 , a2 , …,an∈R,n≥3.若p:a1 , a2 , …,an成等比数列;q:(a +a +…+a )(a +a +…+a )=(a1a2+a2a3+…+an1an2 , 则p是q的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 则( )
A.对于任意正实数x恒有f(x)≥g(x)
B.存在实数x0 , 当x>x0时,恒有f(x)>g(x)
C.对于任意正实数x恒有f(x)≤g(x)
D.存在实数x0 , 当x>x0时,恒有f(x)<g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x),当x≥0时,
f(x)=
则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为(  )
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】英格兰足球超级联赛,简称英超,是英国足球最高等级的职业足球联赛,也是世界最高水平的职业足球联赛之一,目前英超参赛球队有20个,在2014-2015赛季结束后将各队积分分成6段,并绘制出了如图所示的频率分布直方图(图中各分组区间包括左端点,不包括右端点,如第一组表示积分在[30,40)内).根据图中现有信息,解答下面问题:

(Ⅰ)求积分在[40,50)内的频率,并补全这个频率分布直方图;

(Ⅱ)从积分在[40,60)中的球队中任选取2个球队,求选取的2个球队的积分在频率分布直方图中处于不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为奇函数,当x≥0时,f(x)= .g(x)=
(1)求当x<0时,函数f(x)的解析式,并在给定直角坐标系内画出f(x)在区间[﹣5,5]上的图象;(不用列表描点)

(2)根据已知条件直接写出g(x)的解析式,并说明g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量问题,全民关注,有需求就有研究,某科研团队根据工地常用高压水枪除尘原理,制造了雾霾神器﹣﹣﹣雾炮,虽然雾炮不能彻底解决问题,但是能在一定程度上起到防霾、降尘的作用,经过测试得到雾炮降尘率的频率分布直方图:
若降尘率达到18%以上,则认定雾炮除尘有效.

(1)根据以上数据估计雾炮除尘有效的概率;
(2)现把A市规划成三个区域,每个区域投放3台雾炮进行除尘(雾炮之间工作互不影响),若在一个区域内的3台雾炮降尘率都低于18%,则需对该区域后期追加投入20万元继续进行治理,求后期投入费用的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代算书《孙子算经》中有一著名的问题“物不知数”如图1,原题为:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?后来,南宋数学家秦九韶在其著作《数学九章》中对此类问题的解法做了系统的论述,并称之为“大衍求一术”,如图2程序框图的算法思路源于“大衍求一术”执行该程序框图,若输入的a,b分别为20,17,则输出的c=( )

A.1
B.6
C.7
D.11

查看答案和解析>>

同步练习册答案