精英家教网 > 高中数学 > 题目详情

【题目】对于数对序列P:(a1 , b1),(a2 , b2),…,(an , bn),记T1(P)=a1+b1 , Tk(P)=bk+max{Tk1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk1(P),a1+a2+…+ak}表示Tk1(P)和a1+a2+…+ak两个数中最大的数,
(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;
(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;
(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).

【答案】
(1)解: T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;
(2)解:T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.

当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,

∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);

当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,

∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);

∴无论m=a和m=d,T2(P)≤T2(P′);


(3)解:数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;

T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.


【解析】(1)利用T1(P)=a1+b1 , Tk(P)=bk+max{Tk1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(3)根据新定义,可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=(
A.5﹣4i
B.5+4i
C.3﹣4i
D.3+4i

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=(x2+bx﹣4)logax(a>0且a≠1)若对任意x>0,恒有y≤0,则ba的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某空间几何体的正视图是三角形,则该几何体不可能是(
A.圆柱
B.圆锥
C.四面体
D.三棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|﹣1<x<4},B={y|y=x+1,x∈A},(UA)∩(UB)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U={1,2,3,4},集合A={1,2},B={2,3},则U(A∪B)=(
A.{1,3,4}
B.{3,4}
C.{3}
D.{4}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间(
A.(a,b)和(b,c)内
B.(﹣∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(﹣∞,a)和(c,+∞)内

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的(
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面三个集合:A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1},请说说它们各自代表的含义

查看答案和解析>>

同步练习册答案