精英家教网 > 高中数学 > 题目详情
2.函数f(x)=ex-x-3(x>0)的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 由题意得,利用零点的性质即函数穿过零点函数值异号,即分别算出f(0)与f(1),f(1)与f(2),f(2)与f(3),f(3)与f(4)是否异号即可.

解答 解:由题意得:f(0)=-2<0,f(1)=e-4<0,所以f(0)与f(1)同号,所以A错;
又因为f(2)=e2-5>0,所以f(1)与f(2)异号,所以B正确;
f(3)=e3-6>0,所以f(2)与f(3)同号,所以C错;
f(4)=e4-7>0,所以f(3)与f(4)同号,所以D错;
故选:B.

点评 本题考察函数零点的性质,解题关键在于知道常数e≈2.7即可判断函数值的符号,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=1-ax-xlnx,g(x)=2ex,g(x)的一条切线l的方程:2x-y+m=0
(1)若l也是函数f(x)的切线,求f(x)的切点坐标;
(2)若方程f(x)-g(x)=2有两个实数解,求a的取值范围;
(3)在(1)的条件下,证明:$\frac{f(x)}{g(x)}$<$\frac{1+{e}^{2}}{2(1+x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数y=sin(2x+φ)为偶函数,则φ的最小正数是(  )
A.$\frac{3π}{2}$B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,其中俯视图曲线部分是两个半径为1的圆弧,则这个几何体的体积是(  )
A.8-$\frac{π}{4}$B.8-$\frac{π}{2}$C.8-πD.8-2π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)为定义在R上的偶函数,当x>0时,xf′(x)+f(x)>0,且f(1)=0,则不等式lgx•f(lgx)<0的解集为(0,$\frac{1}{10}$)∪(1,10).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l:y=kx+1与圆C:(x-2)2+(y-3)2=1相交于A,B两点
(1)求弦AB的中点M的轨迹方程;
(2)若O为坐标原点,S(k)表示△OAB的面积,若f(k)=[S(k)•(k2+1)]2,求f(k)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若圆O1:(x-3)2+(y-4)2=25和圆O2:(x+2)2+(y+8)2=r2(5<r<10)相切,则r等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:函数f(x)=|cosx|的最小正周期为2π;命题q:?x,使2x>3x,则下列命题是真命题的是(  )
A.p∧qB.p∧(¬q)C.p∨(¬q)D.p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知长方形ABCD中,AB=1,AD=$\sqrt{2}$,现将长方形沿对角线BD折起,使AC=a,得到一个四面体A-BCD,如图所示.
(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.
(2)当四面体A-BCD体积最大时,求二面角A-CD-B的余弦值.

查看答案和解析>>

同步练习册答案