精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:
①存在实数α使
②直线 是函数y=sinx图象的一条对称轴.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,则tanα>tanβ.
其中正确命题的题号为( )
A.①②
B.②③
C.③④
D.①④

【答案】B
【解析】解:①∵ ,∴①错误;
②∵y=sinx图象的对称轴方程为 ,k=﹣1, ,∴②正确;
③根据余弦函数的性质可得y=cos(cosx)的最大值为ymax=cos0=1,ymin=cos(cos1),其值域是[cos1,1],③正确;
④不妨令 ,满足α,β都是第一象限角,且α>β,但tanα<tanβ,④错误;
故选B.
【考点精析】根据题目的已知条件,利用两角和与差的正弦公式和正弦函数的对称性的相关知识可以得到问题的答案,需要掌握两角和与差的正弦公式:;正弦函数的对称性:对称中心;对称轴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如表:

投资股市

获利40%

不赔不赚

亏损20%

购买基金

获利20%

不赔不赚

亏损10%

概率P

概率P

p

q

(I)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“购买基金”,若一年后他们中至少有一人盈利的概率大于 ,求p的取值范围;
(II)某人现有10万元资金,决定在“投资股市”和“购买基金”这两种方案中选出一种,若购买基金现阶段分析出 ,那么选择何种方案可使得一年后的投资收益的数学期望值较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|+|x﹣2|,不等式f(x)≥t对x∈R恒成立.
(1)求t的取值范围;
(2)记t的最大值为T,若正实数a,b满足a2+b2=T,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,过椭圆 右焦点的直线 交椭圆C于M,N两点,P为M,N的中点,且直线OP的斜率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设另一直线l与椭圆C交于A,B两点,原点O到直线l的距离为 ,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,错误的命题个数有(

为奇函数的必要非充分条件;

②函数是偶函数;

③函数的最小值是

④函数的定义域为,且对其内任意实数均有:,则上是减函数.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10)

某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米,房屋正面的造价为400/m2,房屋侧面的造价为150/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.

1)把房屋总造价表示成的函数,并写出该函数的定义域.

2)当侧面的长度为多少时,总造价最底?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知O为坐标原点,点A、B的坐标分别为(1,1)、(﹣3,3).若动点P满足 ,其中λ、μ∈R,且λ+μ=1,则点P的轨迹方程为(
A.x﹣y=0
B.x+y=0
C.x+2y﹣3=0
D.(x+1)2+(y﹣2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣a)lnx+b.
(1)当a=0时,讨论函数f(x)在[ ,+∞)上的零点个数;
(2)当a>1且函数f(x)在(1,e)上有极小值时,求实数a的取值范围.

查看答案和解析>>

同步练习册答案