精英家教网 > 高中数学 > 题目详情
9.已知点A(3,2),B($\sqrt{3}$+1,1),过点P(1,0)的直线L与线段AB有公共点,
(1)求直线L的斜率k的取值范围.
(2)求直线L的倾斜角α的取值范围.

分析 (1)如图所示,由于过点P(1,0)的直线l与线段AB有公共点.可得kPB≤k≤kPA.即可直线l的斜率k的取值范围.(2)由斜率范围,即可得出直线l的倾斜角的取值范围

解答 解:(1)如图所示

∵kPA=1,kPB=$\frac{\sqrt{3}}{3}$,
又过点P(1,0)的直线L与线段AB有公共点.
∴$\frac{\sqrt{3}}{3}$≤k≤1.
∴直线l的斜率k的取值范围是[$\frac{\sqrt{3}}{3}$,1].
(2)由(1)可得:tan$\frac{π}{4}$=1,tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$,直线的倾斜角为α,则α∈[0,π),
直线l的倾斜角的取值范围是[$\frac{π}{6},\frac{π}{4}$].

点评 本题考查了直线的向量计算公式及其应用,考查了数形结合思想方法与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若函数f(x)为奇函数,当x<0时,f(x)=2x(x+1),则当x>0时,f(x)的表达式为f(x)=2x(1-x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.命题P:-2<$\frac{1}{3}$(1-a)<2,命题Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅,命题P、Q中有且仅有一个为真命题,则实数a的范围(-5,-4]∪[7,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设集合A={x|x2+x-2=0},B={x∈R|x2+(a+1)x+$\frac{1}{4}$a2-$\frac{13}{4}$=0}.
(1)若A∩B={1},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=cos(2x+$\frac{π}{3}$)+sin2x,求f(x)的最小正周期和f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=ax+2,g(x)=$\frac{2a}{x}$,如果f(1)>g(1),且g(x)在(0,+∞)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=(a2-3)x对于x<0时,总有f(x)>1,则a的取值范围是(-2,$\sqrt{3}$)∪($\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数y=f(x)的定义域为R+,且f(xy)=f(x)+f(y),f(8)=3,则f($\sqrt{2}$)等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x-1.
(1)求函数f(x)的单调递减区间.
(2)将函数f(x)的图象向右平移$\frac{π}{6}$个长度单位,再向下平移$\frac{1}{2}$个长度单位,得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

同步练习册答案