精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3-2x+1,g(x)=lnx.
(Ⅰ)求F(x)=f(x)-g(x)的单调区间和极值;
(Ⅱ)是否存在实常数k和m,使得x>0时,f(x)≥kx+m且g(x)≤kx+m?若存在,求出k和m的值;若不存在,说明理由.

解:(Ⅰ)F(x)=x3-2x+1-lnx(x>0),求导数得
令F′(x)>0,∵x>0,∴可得x>1;
]令F′(x)<0,∵x>0,∴可得0<x<1;
∴F(x)在(0,1)单调递减,在(1,+∞)单调递增,从而F(x)的极小值为F(1)=0.…(6分)
(Ⅱ)因f(x)与g(x)有一个公共点(1,0),而函数g(x)在点(1,0)的切线方程为y=x-1.…(9分)
下面验证都成立即可.
设h(x)=x3-2x+1-(x-1)=x3-3x+2(x>0)
求导数得h'(x)=3x2-3=3(x+1)(x-1)(x>0)
∴h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
∴h(x)=x3-2x+1-(x-1)(x>0)的最小值为h(1)=0,所以f(x)≥x-1恒成立. …(12分)
k(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
所以k(x)=lnx-(x-1)的最大值为k(1)=0所以k(x)≤x-1恒成立.
故存在这样的实常数k和m,且k=1且m=-1. …(15分)
分析:(Ⅰ)求导数,由导数的正负确定函数的单调区间,从而可得F(x)的极小值;
(Ⅱ)因f(x)与g(x)有一个公共点(1,0),而函数g(x)在点(1,0)的切线方程为y=x-1,验证都成立即可.
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查学生分析解决问题的能力,将问题转化为验证都成立是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案