精英家教网 > 高中数学 > 题目详情

【题目】如图,在菱形中,沿对角线折起,使之间的距离为分别为线段上的动点

1)求线段长度的最小值;

2)当线段长度最小时,求直线与平面所成角的正弦值

【答案】1;(2

【解析】

试题取中点,连结,则因为,所以,所以为直角三角形所以,所以平面

分别为

1)设出点的坐标,由空间向量计算求出,由二次函数性质求最小值即可.

2)由空间向量求出平面的法向量与向量,即可求之.

试题解析:取中点,连结,则

因为,所以

所以为直角三角形所以

所以平面2

分别为轴,建立如图

所示空间直角坐标系,则3

1)设

5

时,长度最小值为6

2)由(1)知,设平面的一个法向量为

,化简得

,设与平面所成角为,则

故直线PQ与平面ACD所成角的正弦值为10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《乌鸦喝水》是《伊索寓言》中一个寓言故事。通过讲述一只乌鸦喝水的故事,告诉人们遇到困难要运用智慧、认真思考才能让问题迎刃而解的道理。如图2所示,乌鸦想喝水,发现有一个锥形瓶,上面部分是圆柱体,下面部分是圆台,瓶口直径为3厘米,瓶底直径为9厘米,瓶口距瓶颈为厘米,瓶颈到水位线距离和水位线到瓶底距离均为厘米现将1颗石子投入瓶中,发现水位线上移厘米,若只有当水位线到达瓶口时,乌鸦才能喝到水,则乌鸦共需要投入的石子数量至少是?(石子体积均视为一致)

圆台体积公式:,其中,为圆台高,为圆台下底面半径,为圆台上底面半径(

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的八卦,而龙马身上的图案就叫做河图.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.河图将一到十分成五行属性分别为金,木,水,火,土的五组,在五行的五种属性中,五行相克的规律为:金克木,木克土,土克水,水克火,火克金;五行相生的规律为:木生火,火生土,土生金,金生水,水生木.现从这十个数中随机抽取3个数,则这3个数字的属性互不相克的条件下,取到属性为土的数字的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点的坐标分别为,且所在直线的斜率之积等于,记顶点的轨迹为.

Ⅰ)求顶点的轨迹的方程;

Ⅱ)若直线与曲线交于两点,点在曲线上,且的重心(为坐标原点),求证:的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆C满足:圆心在轴上,且与圆相外切.设圆C轴的交点为MN,若圆心C轴上运动时,在轴正半轴上总存在定点,使得为定值,则点的纵坐标为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,为等比数列,公比为..

1)若.

①当,求数列的通项公式;

②设,试比较的大小?并证明你的结论.

2)问集合中最多有多少个元素?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019831日至915日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是(

A.第一场得分的中位数为B.第二场得分的平均数为

C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,,点的中点,点为线段垂直平分线上的一点,且,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的同侧,在移动过程中,当取得最小值时,的面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程(为参数),直线的参数方程(为参数).

1)求曲线在直角坐标系中的普通方程;

2)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.

查看答案和解析>>

同步练习册答案