精英家教网 > 高中数学 > 题目详情

【题目】已知. 对于函数,若存在常数,使得,不等式都成立,则称直线是函数的分界线.

1)讨论函数的单调性;

2)当时,试探究函数是否存在“分界线”?若存在,求出分界线方程;若不存在说明理由.

【答案】1)见解析(2时,存在“分界线”,理由见解析

【解析】

(1)求导后分,三种情况讨论即可.

(2)由题意,代入时,有,再根据二次函数的恒成立问题求得,再证明即可.

1)由,

时,有,则上单调递增;

时,由解得,

时,对于,有,有,

上单调递减,在上单调递增;

时,对于,有,有,

上单调递增,在上单调递减.

2)当时,,,

都成立,

都成立.

时,有;且,对都成立,

,都成立.

所以 ,

此时,令,

,

,在恒成立,

又在

单增且

从而有时,时,,即在

所以上递减,在上递增.

因此,即

时,存在“分界线”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.m为实数,若方程表示双曲线,则m2

B.pq为真命题pq为真命题的充分不必要条件

C.命题xR,使得x2+2x+30”的否定是:xRx2+2x+30”

D.命题x0yfx)的极值点,则fx)=0”的逆命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:

中国新能源汽车产销情况一览表

新能源汽车生产情况

新能源汽车销售情况

产品(万辆)

比上年同期
增长(%)

销量(万辆)

比上年同期
增长(%)

2018年3月

6.8

105

6.8

117.4

4月

8.1

117.7

8.2

138.4

5月

9.6

85.6

10.2

125.6

6月

8.6

31.7

8.4

42.9

7月

9

53.6

8.4

47.7

8月

9.9

39

10.1

49.5

9月

12.7

64.4

12.1

54.8

10月

14.6

58.1

13.8

51

11月

17.3

36.9

16.9

37.6

1-12月

127

59.9

125.6

61.7

2019年1月

9.1

113

9.6

138

2月

5.9

50.9

5.3

53.6

根据上述图表信息,下列结论错误的是(

A.20173月份我国新能源汽车的产量不超过万辆

B.2017年我国新能源汽车总销量超过万辆

C.20188月份我国新能源汽车的销量高于产量

D.20191月份我国插电式混合动力汽车的销量低于万辆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,倾斜角为,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的方程为.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若直线与曲线相交于两点,设点,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 ,2018年这一年内从 市到市乘坐高铁或飞机出行的成年人约为万人次.为了 解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):

满意度

老年人

中年人

青年人

乘坐高铁

乘坐飞机

乘坐高铁

乘坐飞机

乘坐高铁

乘坐飞机

10(满意)

12

1

20

2

20

1

5(一般)

2

3

6

2

4

9

0(不满意)

1

0

6

3

4

4

span>1)在样本中任取,求这个出行人恰好不是青年人的概率;

2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,的分布列和数学期望;

3)如果甲将要从市出发到,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,底面是边长为6的正三角形,底面,且与底面所成的角为

1)求三棱锥的体积;

2)若的中点,求异面直线所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地要建造一个边长为2(单位:)的正方形市民休闲公园,将其中的区域开挖成一个池塘,如图建立平面直角坐标系后,点的坐标为,曲线是函数图像的一部分,过边上一点在区域内作一次函数)的图像,与线段交于点(点不与点重合),且线段与曲线有且只有一个公共点,四边形为绿化风景区.

1)求证:

2)设点的横坐标为

①用表示两点的坐标;

②将四边形的面积表示成关于的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某贫困县在政府精准扶贫的政策指引下,充分利用自身资源,大力发展养茶业.该县农科所为了对比AB两种不同品种茶叶的产量,在试验田上分别种植了AB两种茶叶各亩,所得亩产数据(单位:千克)如下:

A

B

1)从AB两种茶叶亩产数据中各任取1个,求这两个数据都不低于的概率;

2)从B品种茶叶的亩产数据中任取个,记这两个数据中不低于的个数为,求的分布列及数学期望;

3)根据以上数据,你认为选择该县应种植茶叶A还是茶叶B?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,,且.

1的通项公式为__________

2)在项中,被除余的项数为__________

查看答案和解析>>

同步练习册答案