精英家教网 > 高中数学 > 题目详情
平面直角坐标系中,O为坐标原点,给定两点A(1,0)、B(0,-2),点C满足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求点C的轨迹方程;
(2)设点C的轨迹与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
交于两点M、N,且以MN为直径的圆过原点,求证:
1
a2
+
1
b2
为定值

(3)在(2)的条件下,若椭圆的离心率不大于
2
2
,求椭圆长轴长的取值范围.
分析:(1)由向量等式,得点C的坐标,消去参数即得点C的轨迹方程;
(2)将直线与椭圆方程组成方程组,利用方程思想,求出x1x2+y1y2,再结合向量的垂直关系得到关于a,b的关系,化简即得结论.
(3)由(2)得
1
a2
+
1
b2
=2
从而 b2=
a2
2a2-1
又椭圆的离心率不大于
2
2
,得出 e 2=
a 2-b 2
a 2
1
2
.解得椭圆长轴长2a的取值范围即可.
解答:解:(1)设C(x,y),因为
OC
OA
OB
,则(x,y)=α(1,0)+β(0,-2)

x=α
y=-2β
 &∵α-2β=1
 &∴x+y=1
即点C的轨迹方程为x+y=1
(2)∴
x+y=1
x2
a2
+
y2
b2
=1
∴(a2+b2)x2-2a2x+a2-a2b2=0∵a2+b2≠0

M(x1y1),N(x2y2)∴x1+x2=
2a2
a2+b2
x1x2=
a2-a2b2
a2+b2

由题意
OM
ON
=0∴x1x2+y1y2=0

∴x1x2+(1-x1)(1-x2)=1-(x1+x2)+2x1x2
=1-
2a2
a2+b2
+
2(a2-a2b2)
a2+b2
=0∴a2+b2=2a2b2

1
a2
+
1
b2
=2
为定值
(3)∵e≤
2
2
 ∴e2=
a2-b2
a2
1
2

1
a2
+
1
b2
=2
,∴b2=
a2
2a2-1

1-
1
2a2-1
1
2
,即
1
2a2-1
1
2

2
2
<a≤
6
2
,从而
2
<2a≤
6

∴椭圆实轴长的取值范围是(
2
点评:本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面直角坐标系中,O为坐标原点,已知两点A(3,1)、B(-1,3),若点C满足
OC
OA
OB
,其中α、β∈R,且α+β=1,则点C的轨迹方程为(  )
A、3x+2y-11=0
B、(x-1)2+(y-2)2=5
C、2x-y=0
D、x+2y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知水平地面上有一篮球,在斜平行光线的照射下,其阴影为一椭圆(如图),在平面直角坐标系中,O为原点,设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),篮球与地面的接触点为H,则|OH|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O(0,0),P(6,8),将向量
OP
按逆时针旋转
π
4
后,得向量
OQ
则点Q的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•海淀区二模)平面直角坐标系中,O为坐标原点,已知两定点A(1,0)、B(0,-1),动点P(x,y)满足:
OP
=m
OA
+(m-1)
OB
(m∈R)

(1)求点P的轨迹方程;
(2)设点P的轨迹与双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
交于相异两点M、N.若以MN为直径的圆经过原点,且双曲线C的离心率等于
3
,求双曲线C的方程.

查看答案和解析>>

同步练习册答案