精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,焦点为,过点的直线交抛物线于两点,则的最小值为__________

【答案】

【解析】分析:设A(x1,y1),B(x2,y2).当直线AB的斜率存在时,设直线AB的方程为y=k(x﹣),(k0).与抛物线方程联立可得根与系数的关系,利用|AF|+4|BF|=x1++2(x2+)及其基本不等式的性质即可得出,当直线AB的斜率不存在时,直接求出即可.

详解:F(,0),

A(x1,y1),B(x2,y2).

当直线AB的斜率存在时,设直线AB的方程为y=k(x﹣),(k0).

联立 ,化为k2x2﹣(k2+2)x+k2=0.

x1x2=

∴|AF|+2|BF|=x1++2(x2+)=x1+2x2+2+=,当且仅当x1=2x2=时取等号.

当直线AB的斜率不存在时,|AF|+2|BF|=3p=3.

综上可得:|AF|+2|BF|的最小值为:

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M(1),过点P(2,1)的直线l与椭圆C相交于不同的两点AB.

1)求椭圆C的方程;

2)是否存在直线l,满足?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方体ABCDA1B1C1D1中,A1AABEF分别是BD1AD中点,求异面直线CD1EF所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为奇函数,a为常数.

1)求a的值;

2)判断函数时单调性并证明;

3)若对于区间上的每一个x的值,不等式恒成立,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面ABC,点EF分别为BC的中点.

1)求证:平面

2)求证:直线平面

3)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月22日.在平昌冬奥会短道速滑男子500米比赛中.中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况.收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时).又在100位女生中随机抽取20个人.已知这20位女生的数据茎叶图如图所示.

(1)将这20位女生的时间数据分成8组,分组区间分别为,在答题卡上完成频率分布直方图;

(2)以(1)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;

(3)以(1)中的频率估计100位女生中累计观看时间小于20个小时的人数.已知200位男生中累计观看时间小于20小时的男生有50人请完成答题卡中的列联表,并判断是否有99 %的把握认为“该校学生观看冬奥会累计时间与性别有关”.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,上的奇函数,且.

1)求的解析式;

2)若函数上只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数.

1)求的值,并求的定义域;

2)判断函数的单调性,不需要证明;

3)若对于任意,是否存在实数,使得不等式恒成立?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案