精英家教网 > 高中数学 > 题目详情
给出下列命题:
①常数列既是等差数列,又是等比数列;
②A,B是△ABC的内角,且A>B,则sinA>sinB;
③在数列{an}中,如果n前项和Sn=2n2+1,则此数列是一个公差为4的等差数列;
④若向量
a
b
方向相同,且|
a
|>|
b
|,则
a
+
b
a
-
b
方向相同;
⑤{an}是等比数列,Sn为其前n项和,则S4,S8-S4,S12-S8成等比数列.
则上述命题中正确的有
②④⑤
②④⑤
 (填上所有正确命题的序号)
分析:①当常数列的项都为0时,是等差数列但不是等比数列,此命题为假命题;②由正弦定理得sinA>sinB?a>b?A>B,此数列是一个从第二项起是一个公差为4的等差数列,故③不正确,由向量的加减原则知
a
+
b
a
-
b
方向相同;故④正确,由等比数列的性质知⑤正确
解答:解:①当常数列的项都为0时,是等差数列但不是等比数列,此命题为假命题;
②由正弦定理得sinA>sinB?a>b?A>B.故②正确,
③在数列{an}中,如果n前项和Sn=2n2+1,则此数列是一个从第二项起是一个公差为4的等差数列,故③不正确,
④若向量
a
b
方向相同,且|
a
|>|
b
|,由向量的加减原则知
a
+
b
a
-
b
方向相同;故④正确
⑤{an}是等比数列,Sn为其前n项和,则S4,S8-S4,S12-S8成等比数列.由等比数列的性质知⑤正确,
综上可知②④⑤正确,
故答案为:②④⑤
点评:本题主要考查正弦定理解决三角形问题与等差数列等比数列定义的应用,解决此类问题的关键是熟悉正弦定理与数列的有关定义.本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、设f(x)=x3+bx2+cx,又m是一个常数.已知当m<0或m>4时,f(x)-m=0只有一个实根;当0<m<4时,f(x)-m=0有三个相异实根,现给出下列命题:
(1)f(x)-4=0和f'(x)=0有一个相同的实根;
(2)f(x)=0和f'(x)=0有一个相同的实根;
(3)f(x)+3=0的任一实根大于f(x)-1=0的任一实根;
(4)f(x)+5=0的任一实根小于f(x)-2=0的任一实根.其中错误命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

10、如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
上述命题中,正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(
x
+
1
x
)6
的展开式中的常数项是20;
②函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S
=∫
π
sinxdx

③若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知函数f(x)=(
1
2x-1
)•x2-sinx+a(a为常数)
,且f(loga1000)=3,则f(lglg2)=3;
②若函数f(x)=lg(x2+ax-a)的值域是R,则a∈(-4,0);
③关于x的方程(
1
2
)x=lga
有非负实数根,则实数a的取值范围是(1,10);
④如图,三棱柱ABC-A1B1C1中,E、F分别是AB,AC的中点,平面EB1C1F将三棱柱分成几何体AEF-AB1C1和B1C1-EFCB两部分,其体积分别为V1,V2,则V1:V2=7:5.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+c,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,现给出下列命题:
(1)f(x)-4=0和f′(x)=0有且只有一个相同的实根.
(2)f(x)=0和f′(x)=0有且只有一个相同的实根.
(3)f(x)+3=0的任一实根大于f(x)-1=0的任一实根.
(4)f(x)+5=0的任一实根小于f(x)-2=0的任一实根.
其中错误命题的个数为(  )

查看答案和解析>>

同步练习册答案