精英家教网 > 高中数学 > 题目详情
19.函数y=$\sqrt{1-\frac{1}{2}sinx}$的值域为[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{2}$].

分析 由-1≤sinx≤1结合不等式的性质可得.

解答 解:∵-1≤sinx≤1,∴-1≤-sinx≤1,
∴-$\frac{1}{2}$≤-$\frac{1}{2}$sinx≤$\frac{1}{2}$,∴$\frac{1}{2}$≤1-$\frac{1}{2}$sinx≤$\frac{3}{2}$,
∴$\frac{\sqrt{2}}{2}$≤$\sqrt{1-\frac{1}{2}sinx}$≤$\frac{\sqrt{6}}{2}$
故答案为:[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{2}$]

点评 本题考查三角函数的最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数y=lg(-x2-2x+8)的单调递减区间是(  )
A.(-∞,-1)B.(-1,2)C.(-4,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过原点且平分直线x+y-2=0在坐标轴之间的线段,求这条直线的方程及它与已知直线的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若关于x的不等式|x-8|-|x-6|≤a的解集非空,则实数a的取值范围是(  )
A.(-2,+∞)B.[-2,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足:a1=$\frac{1}{2}$,an+1=$\frac{1}{2}$an+2-n(n∈N*).
(1)证明:数列{2n•an}是等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若两个函数的图象有一个公共点,并在该点处的切线相同,就说明这两个函数有why点,已知函数f(x)=lnx和g(x)=ex+m有why点,则m所在的区间为(  )
A.(-3,-e)B.(-e,-$\frac{21}{8}$)C.(-$\frac{21}{8}$,-$\frac{13}{6}$)D.(-$\frac{13}{6}$,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式$\frac{3x-1}{2-x}$<0的解集是{x|x<$\frac{1}{3}$或x>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知m∈R,当点(-4,6)到直线l:(m-2)x-y+3m+2=0的距离最大时,m的值为(  )
A.2B.-$\frac{1}{2}$C.$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x+2$\sqrt{x}$+1(x>0),数列{an}满足:a1=4,an+1=f(an),数列b1,b2-b1,b3-b2,…bn-bn-1是首项为1,公比为2的等比数列.
(1)求an,bn
(2)记cn=$\frac{6}{{a}_{n}}$,数列{cn}的前n项和为Tn,证明Tn<6.

查看答案和解析>>

同步练习册答案