精英家教网 > 高中数学 > 题目详情
11.已知Sn为数列{an}的前n项和,$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{4}$+…+$\frac{{a}_{n-1}}{n}$=an-2(n≥2),且a1=2.
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{(3{a}_{n}-5)(3{a}_{n+1}-5)}$,求数列{bn}的前n项和Bn

分析 (1)利用递推关系与“累乘求积”方法即可得出;
(2)利用“裂项求和”方法即可得出.

解答 解:(1)∵$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{4}$+…+$\frac{{a}_{n-1}}{n}$=an-2(n≥2),
∴$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{4}$+…+$\frac{{a}_{n-1}}{n}$+$\frac{{a}_{n}}{n+1}$=an+1-2,
∴$\frac{{a}_{n}}{n+1}$=an+1-an
化为$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+2}{n+1}$,
∴an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{2}}{{a}_{2}}$•a1
=$\frac{n+1}{n}•\frac{n}{n-1}•\frac{n-1}{n-2}$•…•$\frac{3}{2}$•2
=n+1,
∴an=n+1.
(2)bn=$\frac{1}{(3{a}_{n}-5)(3{a}_{n+1}-5)}$=$\frac{1}{(3n+3-5)(3n+6-5)}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴数列{bn}的前n项和Bn=$\frac{1}{3}[(1-\frac{1}{4})+(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$
=$\frac{1}{3}(1-\frac{1}{3n+1})$
=$\frac{n}{3n+1}$.

点评 本题考查了递推关系与“累乘求积”方法、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.画出函数y=1+2cos2x,x∈[0,π]的简图,并求使y≥0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.将下列各对数式表示成指数式:
(1)log2$\frac{1}{4}$=-2;
(2)log${\;}_{\sqrt{3}}$27=6;
(3)lg5.4=x;
(4)lnx=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=x2+2(a-1)x+12,若g(x)=|f(x)|在区间(-∞,1)上是减函数,则实数a的取值范围是(-∞,$-\frac{11}{2}$]∪[1-2$\sqrt{3}$,0]∪(1+2$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知22x-25=2x+2,则lg(x2+1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知cos(α+$\frac{π}{4}$)=-$\frac{4}{5}$,$\frac{π}{4}$<α<$\frac{3π}{4}$,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若球的大圆的面积扩大为原来的2倍,则球的表面积扩大为原来的(  )
A.8倍B.4倍C.2$\sqrt{2}$倍D.2倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若直线y=-x+k与曲线x=-$\sqrt{1-{y}^{2}}$恰有一个公共点,则k的取值范围k=-$\sqrt{2}$或k∈(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,一船自西向东匀速行驶,上午9时到达距离灯塔P为68海里的M处,在M处看灯塔P在船的北偏东75°方向,上午11时航行到N处,在N处看灯塔P在船的北偏西45°方向,则这艘船的航行速度为(  )
A.17$\sqrt{6}$海里/小时B.68$\sqrt{6}$海里/小时C.17$\sqrt{2}$海里/小时D.68$\sqrt{2}$海里/小时

查看答案和解析>>

同步练习册答案