精英家教网 > 高中数学 > 题目详情
2.sin47°cos13°+sin167°sin43°=$\frac{\sqrt{3}}{2}$.

分析 首先,根据诱导公式,化简为两角和的正弦的形式,然后,利用两角和的正弦公式进行化简即可.

解答 解:sin47°cos13°+sin167°sin43°
=sin47°cos13°+sin13°cos47°
=sin(47°+13°)
sin60°
=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题重点考查了诱导公式、两角和的正弦公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.x>0,y>0,x+y=$\frac{1}{2}$,则$\frac{1}{x}$+$\frac{4}{y}$的最小值18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知(4x+2y-1)+(x+y+3)i=-3+4i,其中x,y∈R,若z=x+yi,求|z|及$\overline{z}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}的首项为a(a≠0),前n项和为Sn,且Sn+1=t•Sn +a(t≠0).设bn=Sn+1,cn=k+b1+b2+…+bn(k∈R+
(1)求数列{an}的通项公式;
(2)当t=$\frac{\sqrt{5}+1}{2}$时,是否存在正数a,k,使得{cn}为等比数列,若存在求出a,k的值,若不存在说明理由;
(3)当t=1时,若对任意n∈N*,|bn |≥|b4|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=kx+b(k≠0),1≤f(1)≤2,2≤f(2)≤3,求f(3)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:24•($\frac{2}{5}$)-2-${9}^{{log}_{3}5}$•(lg16+lg625)-log49•log2431024.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设a=0.23,b=log20.3,c=log0.32,则a,b,c的大小关系b<c<a(请用“<”连接)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知α∈(-$\frac{3π}{2}$,0),sinα=$\frac{2+cos2α}{5}$,则α=-$\frac{7π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数y=1-$\frac{1}{cosx}$的定义域.

查看答案和解析>>

同步练习册答案