【题目】如图,在四棱锥中,平面ABCD底面是边长为2的正方形, 为的中点,为的中点.
(1)求直线MN与直线CD所成角的余弦值;
(2)求直线OB与平面OCD所成的角.
科目:高中数学 来源: 题型:
【题目】如图所示,已知AB丄平面BCD,M、N分别是AC、AD的中点,BC 丄 CD.
(1)求证:MN//平面BCD;
(2)若AB=1,BC=,求直线AC与平面BCD所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:
①若,,则
②若,,,则
③若,,则
④若,,则
其中正确命题的序号是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年“十一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速()分成六段: , , , , , ,后得到如图的频率分布直方图.
(1)求这40辆小型车辆车速的众数和中位数的估计值;
(2)若从车速在的车辆中任抽取2辆,求车速在的车辆恰有一辆的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】孝感车天地关于某品牌汽车的使用年限(年)和所支出的维修费用(千元)由如表的统计资料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;
(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?
()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生对某小区30位居民的饮食习惯进行了一次调查,并用如图所示的茎叶图表示他们的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的,饮食以肉类为主).
(1)根据茎叶图,说明这30位居民中50岁以上的人的饮食习惯;
(2)根据以上数据完成如下2×2列联表;
主食蔬菜 | 主食肉类 | 总计 | |
50岁以下 | |||
50岁以上 | |||
总计 |
(3)能否有99%的把握认为居民的饮食习惯与年龄有关?
独立性检验的临界值表
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com