【题目】已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.
(1)求椭圆的方程;
(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知圆:与直线:,动直线过定点.
(1)若直线与圆相切,求直线的方程;
(2)若直线与圆相交于、两点,点M是PQ的中点,直线与直线相交于点N.探索是否为定值,若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数;
(1)讨论的极值点的个数;
(2)若,且恒成立,求的最大值.
参考数据:
1.6 | 1.7 | 1.8 | |
4.953 | 5.474 | 6.050 | |
0.470 | 0.531 | 0.588 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知抛物线,过点的直线与抛物线交于、两点,且直线与轴交于点.(1)求证:,,成等比数列;
(2)设,,试问是否为定值,若是,求出此定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场预计全年分批购入电视机3600台,其中每台价值2000元,每批购入的台数相同,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入的电视机的总价值(不含运费)成正比,比例系数为,若每批购入400台,则全年需要支付运费和保管费共43600元.
(1)求的值;
(2)请问如何安排每批进货的数量,使支付运费与保管费的和最少?并求出相应最少费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( )
A.平面α与平面β垂直
B.平面α与平面β所成的(锐)二面角为45°
C.平面α与平面β平行
D.平面α与平面β所成的(锐)二面角为60°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com