精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)当时,判断直线与曲线的位置关系;

2)若直线与曲线相交所得的弦长为,求的值.

【答案】1)相离;(2.

【解析】

1)根据参数方程和极坐标方程与普通方程的关系,进行转化求解即可,利用圆心到直线的距离与半径比较,得出直线与圆的位置关系.

2)由垂径定理,得出圆心到直线的距离,进而求出直线方程中参数的值.

1)由

所以曲线的普通方程为.

时,由,得

,得

代入公式 ,即.

故直线的直角坐标方程为.

因为圆心到直线的距离为.

所以直线与圆相离.

2)由,得

代入公式 ,即.

由垂径定理,得圆心到直线的距离为.

再由点到直线间的距离公式,得

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主

创业,该专营店统计了近五年来创收利润数(单位:万元)与时间(单位:年)的数据,列表如下:

1

2

3

4

5

2.4

2.7

4.1

6.4

7.9

(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合):

(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.

方案一:每满500元可减50元;

方案二:每满500元可抽奖一次,每次中奖的概率都为,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.

①某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客获得100元现金奖励的概率.

②某位顾客购买了1500元的产品,作为专营店老板,是希望该顾客直接选择返回150元现金,还是选择参加三次抽奖?说明理由

附:相关系数公式

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某小区有一块矩形地块,其中,单位:百米.已知是一个游泳池,计划在地块内修一条与池边相切于点的直路(宽度不计),交线段于点,交线段于点.现以点为坐标原点,以线段所在直线为轴,建立平面直角坐标系,若池边满足函数的图象,若点轴距离记为.

1)当时,求直路所在的直线方程;

2)当为何值时,地块在直路不含泳池那侧的面积取到最大,最大值时多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图数据如图.根据茎叶图,下列描述正确的是(

A.甲种树苗的中位数大于乙种树苗的中位数,且甲种树苗比乙种树苗长得整齐

B.甲种树苗的中位数大于乙种树苗的中位数,但乙种树苗比甲种树苗长得整齐

C.乙种树苗的中位数大于甲种树苗的中位数,且乙种树苗比甲种树苗长得整齐

D.乙种树苗的中位数大于甲种树苗的中位数,但甲种树苗比乙种树苗长得整齐

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的图象在点处的切线平行于轴,求函数上的最小值;

2)若关于的方程上有两个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展和人民生活水平的提高,以及城市垃圾分类收集的实施和推广,我国居民生活垃圾的平均热值逐年.上升,垃圾焚烧发电的吨上网电量(单位:千瓦时/吨)显著增加.下表为某垃圾焚烧发电厂最近五个月的生产数据.

月份代码

吨上网电量

若从该发电厂这五个月的生产数据(吨上网电量)中任选两个,求其中至少有一个生产数据超过的概率;

通过散点图(如图)可以发现,变量之间的关系可以用函数(其中为自然对数的底数)来拟合,求常数的值.

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)在点P(1,)处的切线方程

(2)若关于x的不等式有且仅有三个整数解,求实数t的取值范围

(3)存在两个正实数满足,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了调查学生数学素养的情况,从初中部、高中部各随机抽取100名学生进行测试.初中部的100名学生的成绩(单位:分)的频率分布直方图如图所示.

高中部的100名学生的成绩(单位:分)的频数分布表如下:

测试分数

频数

5

20

35

25

15

把成绩分为四个等级:60分以下为级,60分(含60)到80分为级,80分(含80)到90分为级,90分(含90)以上为.

1)根据已知条件完成下面的列联表,据此资料你是否有99%的把握认为学生数学素养成绩“级”与“所在级部”有关?

不是

合计

初中部

高中部

合计

注:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

2)若这个学校共有9000名高中生,用频率估计概率,用样本估计总体,试估计这个学校的高中生的数学素养成绩为级的人数,并估计数学素养成绩的平均分(用组中值代表本组分数);

3)把初中部的级同学编号为,高中部的级同学编号为,从初中部级、高中部级中各选一名同学,求这两名同学的编号奇偶性相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.

查看答案和解析>>

同步练习册答案