精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求证:AC1平面CDB1
(Ⅲ)若BB1=4,求CB1与平面AA1B1B所成角的正切值.
(Ⅰ) 证明:∵三棱柱ABC-A1B1C1为直三棱柱,
∴C1C⊥平面ABC,∴C1C⊥AC,
∵AC=3,BC=4,AB=5,
∴AC⊥BC,
又C1C∩BC=C,
∴AC⊥平面CC1B1B,
∵BC1?平面CC1B1B,
∴AC⊥BC1
(Ⅱ)证明:令BC1与CB1的交点为E,连结DE.
∵D是AB的中点,E为BC1的中点,
∴DEAC1
又∵AC1?平面CDB1,DE?平面CDB1
∴AC1平面CDB1
(Ⅲ)作CD⊥AB于D,连B1D,则
∴CD⊥BB1,AB∩BB1=B,
∴CD⊥平面A1B,
∴∠CB1D即为 CB1与平面AA1B1B所成角,
在直角△ABC中,由等面积可得CD=
12
5

∵BB1=4,BC=4,
∴CB1=4
2

∴B1D=
4
41
5

∴tan∠CB1D=
CD
B1D
=
3
41
41

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

正四面体A-BCD中,异面直线AB与CD所成角为(  )
A.
π
6
B.
π
4
C.
π
3
D.
π
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中直线A1D与平面AB1C1D所成角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,M,N分别是棱B1C1,AD的中点,则直线MN与底面ABCD所成角的大小是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1的棱长为2,M,N分别为AA1、BB1的中点.
求:(1)CM与D1N所成角的余弦值.
(2)D1N与平面MBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1中,BC1与平面BB1D1D所成角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β等于90°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,已知AB=5,AC=3,BD=4,则CD与平面α所成角的正弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=
7
,PA=
3
,∠ABC=120°,G为线段PC的中点.
(1)证明:PA平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果正四棱锥的底面边长为2,侧面积为4
2
,则它的侧面与底面所成的(锐)二面角的大小为______.

查看答案和解析>>

同步练习册答案