精英家教网 > 高中数学 > 题目详情

【题目】已知直线的参数方程: 为参数),曲线的参数方程: 为参数),且直线交曲线两点.

(1)将曲线的参数方程化为普通方程,并求时, 的长度;

(2)巳知点,求当直线倾斜角变化时, 的范围.

【答案】(1) ;(2

【解析】试题分析:

(I)利用消参后可得曲线C的普通方程,把代入交消去参数可得直线的普通方程,再把直线方程代入曲线C方程,结合韦达定理、弦长公式可得弦长;

(II)直线的参数方程是标准参数方程,直接代入曲线C的普通方程,A、B两点参数是此方程的解,且,由此可得其取值范围

试题解析:

(Ⅰ)曲线的参数方程: 为参数),

曲线的普通方程为

时,直线的方程为

代入,可得,∴.

.

(Ⅱ)直线参数方程代入

对应的参数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】fx)是定义在R上的函数,且对任意实数x,有fx2)=x23x+3

)求函数fx)的解析式;

)若{x|fx2)=﹣(a+2x+3b}{a},求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是菱形,平面的中点.

(1)求证:平面平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请解决下列问题:

1)设直棱柱的高为,底面多边形的周长为,写出直棱柱的侧面积计算公式;

2)设正棱锥的底面周长为,斜高为,写出正棱锥的侧面积计算公式;

3)设正棱台的下底面周长为,上底面周长为,斜高为,写出正棱台的侧面积计算公式;

4)写出上述个侧面积计算公式之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校社团活动开展有声有色,极大地推动了学生的全面发展,深受学生欢迎,每届高一新生都踊跃报名加入.现已知高一某班有6名男同学和4名女同学参加心理社,在这10名同学中,4名同学初中毕业于同一所学校,其余6名同学初中毕业于其他6所不同的学校.现从这10名同学中随机选取4名同学代表社团参加校际交流(每名同学被选到的可能性相同).

(Ⅰ)求选出的4名同学初中毕业于不同学校的概率;

(Ⅱ)设为选出的4名同学中女同学的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)的最小值为1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在区间[2aa+1]上不单调,求实数a的取值范围;

3)在区间[11]上,yfx)的图象恒在y2x+2m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

56.3

6.8

289.8

1.6

1469

108.8

表中.

(1)根据散点图判断,哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的年利率的关系为.根据(Ⅱ)的结果回答下列问题:

(i)年宣传费时,年销售量及年利润的预报值是多少?

(ii)年宣传费为何值时,年利率的预报值最大?

附:对于一组数,…,,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调区间;

2)若函数只有一个零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆)与抛物线:的一个公共点,且椭圆与抛物线具有一个相同的焦点

(Ⅰ)求椭圆及抛物线的方程

(Ⅱ)设过且互相垂直的两动直线与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值.

查看答案和解析>>

同步练习册答案