精英家教网 > 高中数学 > 题目详情

(本题满分12分)

(Ⅰ)从名男生和名女生中任选人去参加培训,用表示事件“其中至少有一名女生”,写出从中选取两人的所有可能取法和事件的对立事件,并求事件的概率;

(Ⅱ)函数,那么任意,使函数在实数集上有零根的概率.

 

【答案】

 

(1)

(2)

【解析】解: (Ⅰ)设位男生分别为;两位女生分别为

事件表示“其中至少有一名女生”,则其对立事件为没有女生参加

从以上位同学任选两位同学,情况列举如下:

种选法,每种选法出现的可能性相同,其中没有女生参加的情形只有种,

由等可能性事件的概率可得:

由对立事件概率性质,可得:………………………8分

(Ⅱ) 设在实数集上有零根为事件,

事件发生当且仅当:

即:

中的任意值,

中的所有实数都可以满足使在实数集上有零根

根据几何概率,……………………………………………12分

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案