精英家教网 > 高中数学 > 题目详情

【题目】某工厂生产一种汽车的元件,该元件是经过三道工序加工而成的,三道工序加工的元件合格率分别为.已知每道工序的加工都相互独立,三道工序加工都合格的元件为一等品;恰有两道工序加工合格的元件为二等品;其它的为废品,不进入市场.

(Ⅰ)生产一个元件,求该元件为二等品的概率;

(Ⅱ)若从该工厂生产的这种元件中任意取出3个元件进行检测,求至少有2个元件是一等品的概率.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)先分为互斥的三个事件,再根据独立事件的概率求解;(Ⅱ)分为2个元件是一等品和3个元件是一等品两种情况求解.

解:(Ⅰ)不妨设元件经三道工序加工合格的事件分别为.

所以,,.,,.

设事件为“生产一个元件,该元件为二等品”.

由已知是相互独立事件.

根据事件的独立性、互斥事件的概率运算公式,

所以生产一个元件,该元件为二等品的概率为.

(Ⅱ)生产一个元件,该元件为一等品的概率为

.

设事件为“任意取出3个元件进行检测,至少有2个元件是一等品”,则

.

所以至少有2个元件是一等品的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知甲同学每投篮一次,投进的概率均为.

(1)求甲同学投篮4次,恰有3次投进的概率;

(2)甲同学玩一个投篮游戏,其规则如下:最多投篮6次,连续2次不中则游戏终止.设甲同学在一次游戏中投篮的次数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“菱草形段”第一个问题“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,问底子(每层三角形边菱草束数,等价于层数)几何?”中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上束,下一层束,再下一层束,……,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层菱草束数),则本问题中三角垛底层菱草总束数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:

表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:

如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,分别为的中点,过任作一个平面分别与直线相交于点,则下列结论正确的是___________.①对于任意的平面,都有直线相交于同一点;②存在一个平面,使得点在线段上,点在线段的延长线上; ③对于任意的平面,都有;④对于任意的平面,当在线段上时,几何体的体积是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在学年期末举行“我最喜欢的文化课”评选活动,投票规则是一人一票,高一(1)班44名学生和高一(7)班45名学生的投票结果如下表(无废票):

语文

数学

外语

物理

化学

生物

政治

历史

地理

高一(1)班

6

9

7

5

4

5

3

3

2

高一(7)班

6

4

5

6

5

2

3

该校把上表的数据作为样本,把两个班同一学科的得票之和定义为该年级该学科的“好感指数”.

(Ⅰ)如果数学学科的“好感指数”比高一年级其他文化课都高,求的所有取值;

(Ⅱ)从高一(1)班投票给政治、历史、地理的学生中任意选取位同学,设随机变量为投票给地理学科的人数,求的分布列和期望;

(Ⅲ)当为何值时,高一年级的语文、数学、外语三科的“好感指数”的方差最小?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求的极值;

(Ⅱ)若在区间恒成立,求的取值范围;

(Ⅲ)判断函数的零点个数.(直接写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:

为真为真的充分不必要条件:②为假为真的充分不必要条件;③为真为假的必要不充分条件;④为真为假的必要不充分条件.

其中,正确的结论是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,平面是线段的中点,.

(1)证明:平面

(2)求多面体的表面积.

查看答案和解析>>

同步练习册答案