【题目】已知函数,.
(1)判断函数在区间上的零点的个数;
(2)记函数在区间上的两个极值点分别为、,求证:.
【答案】(1);(2)见解析.
【解析】
(1)利用导数分析函数在区间上的单调性与极值,结合零点存在定理可得出结论;
(2)设函数的极大值点和极小值点分别为、,由(1)知,,且满足,,于是得出,由得,利用正切函数的单调性推导出,再利用正弦函数的单调性可得出结论.
(1),,
,当时,,,,则函数在上单调递增;
当时,,,,则函数在上单调递减;
当时,,,,则函数在上单调递增.
,,,,.
所以,函数在与不存在零点,在区间和上各存在一个零点.
综上所述,函数在区间上的零点的个数为;
(2),.
由(1)得,在区间与上存在零点,
所以,函数在区间与上各存在一个极值点、,且,,
且满足即,,
,
又,即,,
,,,
由在上单调递增,得,
再由在上单调递减,得
,即.
科目:高中数学 来源: 题型:
【题目】某工厂为生产一种精密管件研发了一台生产该精密管件的车床,该精密管件有内外两个口径,监管部门规定“口径误差”的计算方式为:管件内外两个口径实际长分别为,标准长分别为则“口径误差”为只要“口径误差”不超过就认为合格,已知这台车床分昼夜两个独立批次生产.工厂质检部在两个批次生产的产品中分别随机抽取40件作为样本,经检测其中昼批次的40个样本中有4个不合格品,夜批次的40个样本中有10个不合格品.
(Ⅰ)以上述样本的频率作为概率,在昼夜两个批次中分别抽取2件产品,求其中恰有1件不合格产品的概率;
(Ⅱ)若每批次各生产1000件,已知每件产品的成本为5元,每件合格品的利润为10元;若对产品检验,则每件产品的检验费用为2.5元;若有不合格品进入用户手中,则工厂要对用户赔偿,这时生产的每件不合格品工厂要损失25元.以上述样本的频率作为概率,以总利润的期望值为决策依据,分析是否要对每个批次的所有产品作检测?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,左顶点为,且,是椭圆上一点.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,直线别与轴交于点,求证:在轴上存在点,使得无论非零实数怎样变化,以 为直径的圆都必过点,并求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆以抛物线的焦点为顶点,且离心率为.
(1)求椭圆的方程;
(2)若直线与椭圆相交于、两点,与直线相交于点,是椭圆上一点且满足(其中为坐标原点),试问在轴上是否存在一点,使得为定值?若存在,求出点的坐标及的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥P-ABC中,PA平面ABC,ABAC,且PA=l,AB=AC=2,点D满足,.
(1)当,求二面角P-BD-C的余弦值;
(2)若直线PC与平面PBD所成角的正弦值为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com