【题目】如图已知,,、分別为、的中点,将沿折起,得到四棱锥,为的中点.
(1)证明:平面;
(2)当正视图方向与向量的方向相同时,的正视图为直角三角形,求此时二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)由平面图可知,,,得到平面,得,再由已知可得.由直线与平面垂直的判定可得平面;
(2)由的正视图三角形与全等,且为直角三角形,得,以为原点,分别以、、所在直线为、、轴建立空间直角坐标系,分别求出平面的一个法向量与平面的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值.
(1)由平面图可知,,,
又,平面,平面,,
为的中点,,.
,平面;
(2)四棱锥的正视图三角形与全等,且均为直角三角形,,
以为原点,分别以、、所在直线为、、轴建立空间直角坐标系.
则、、、、、,
,,.
设平面的一个法向量为,
由,取,得.
又为平面的一个法向量,
设二面角为,.
由图形可知,二面角为钝角,所以,二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD﹣HKLE中,底面ABCD是边长为3的正方形,对角线AC与BD相交于点O,点F在线段AH上且,BE与底面ABCD所成角为.
(1)求证:AC⊥BE;
(2)M为线段BD上一点,且,求异面直线AM与BF所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量=(cosx,sinx),=(cosx,﹣sinx),函数.
(1)若,x(0,),求tan(x+)的值;
(2)若,(,),,(0,),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在中,分别为的中点,为的一个三等分点(靠近点).将沿折起,记折起后点为,连接为上的一点,且,连接.
(1)求证:平面;
(2)若,直线与平面所成的角为,当最大时,求,并计算.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥中,,二面角、、的大小均为,设三棱锥的外接球球心为,直线交平面于点,则三棱锥的内切球半径为_______________,__________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场推出消费抽现金活动,顾客消费满1000元可以参与一次抽奖,该活动设置了一等奖、二等奖、三等奖以及参与奖,奖金分别为:一等奖200元、二等奖100元、三等奖50元、参与奖20元,具体获奖人数比例分配如图,则下列说法中错误的是( )
A.获得参与奖的人数最多
B.各个奖项中一等奖的总金额最高
C.二等奖获奖人数是一等奖获奖人数的两倍
D.奖金平均数为元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com