设二次函数f(x)=mx2+nx,函数g(x)=ax3+bx-3(x>0),且有f'(0)=0,f′(-1)=-2,f(1)=g(1),f′(1)=g′(1).
(1)求函数f(x),g(x)的解析式;
(2)是否存在实数k和p,使得f(x)≥kx+p和g(x)≤kx+p成立,若存在,求出k和p的值;若不存在,说明理由.
解:(Ⅰ)∵f'(x)=2mx+n,g'(x)=3ax2+b,∴f'(0)=n=0,f'(-1)=-2m+n=-2m=-2,即m=1,n=0,
∴f(x)=x2. (2分)
∵f(1)=g(1),∴1=a+b-3①.
∵f'(1)=g'(1),∴2=3a+b②,
由①②解得a=-1,b=5,∴g(x)=-x3+5x-3(x>0). (4分)
(Ⅱ)令f(x)=g(x),可得x2=-x3+5x-3(x>0).
(法一)x3+x2-5x+3=0,(x3-x)+(x2-4x+3)=0,∴x(x+1)(x-1)+(x-1)(x-3)=0,
∴(x-1)(x2+2x-3)=0,∴(x-1)2(x+3)=0,∵x>0,∴x=1,
即f(x)与g(x)有且仅有一个交点为(1,1),f(x)在点(1,1)处的切线为y=2x-1. (8分)
(法二)设h(x)=x3+x2-5x+3(x>0),h'(x)=3x2+2x-5=(x-1)(3x+5)(x>0),
令h'(x)=0,解得x=1,且x∈(0,1)时,h'(x)<0,h(x)单调递减,x∈(1,+∞)时,h'(x)>0,h(x)单调递增,∴x∈(0,+∞)时,h(x)≥h(1)=0.
所以,f(x)与g(x)有且仅有一个交点为(1,1).f(x)在点(1,1)处的切线为y=2x-1. (8分)
下面证明g(x)≤2x-1.
设p(x)=2x-1-g(x)=x3-3x+2(x>0),
(法一)x3-3x+2=x3-x-2x+2=x(x+1)(x-1)-2(x-1)=(x-1)(x2+x-2)=(x-1)2(x+2)
∵x>0,∴p(x)=x3-3x+2≥0,即g(x)≤2x-1. (11分)
(法二)p'(x)=3x2-3=3(x+1)(x-1),令p'(x)=0,解得x=1.
且x∈(0,1)时,p'(x)<0,p(x)单调递减,x∈(1,+∞)时,p'(x)>0,p(x)单调递增,
∴x∈(0,+∞)时,p(x)≥p(1)=0,即g(x)≤2x-1. (11分)
综上,k=2,p=-1(12分)
分析:(Ⅰ)先求导函数,利用f'(0)=n=0,f'(-1)=-2m+n=-2m=-2,可求f(x)的解析式;根据f(1)=g(1),f'(1)=g'(1),可求g(x)的解析式;
(Ⅱ)先确定f(x)与g(x)有且仅有一个交点为(1,1),f(x)在点(1,1)处的切线为y=2x-1,再证明g(x)≤2x-1即可.
点评:本题考查导数知识的运用,考查函数的解析式,考查曲线的切线,考查函数的单调性,综合性强,有难度.