精英家教网 > 高中数学 > 题目详情

【题目】设ξ为随机变量,从侧面均是等边三角形的正四棱锥的8条棱中任选两条,ξ为这两条棱所成的角.
(1)求概率
(2)求ξ的分布列,并求其数学期望E(ξ).

【答案】
(1)解:从正四棱锥的8条棱中任选2条,共有 种不同方法,

其中“ξ= ”包含了两种情形:

①从底面正方形的4条棱中任选两条相邻的棱,共有4种不同方法,

②从4条侧棱中选两条,共有2种不同方法,

∴P(ξ= )= =


(2)解:依题意,ξ的所有可能取值为0,

“ξ=0”包含了从底面正方形的4条棱中任选两条对棱,共同点种不同方法,

∴P(ξ=0)= =

P(ξ= )= =

P(ξ= )=1﹣P(ξ=0)﹣P(ξ= )=

∴ξ的分布列为:

ξ

0

P

E(ξ)= =


【解析】(1)从正四棱锥的8条棱中任选2条,共有 种不同方法,其中“ξ= ”包含了两种情形:从底面正方形的4条棱中任选两条相邻的棱,共有4种不同方法;从4条侧棱中选两条,共有2种不同方法.由此能求出概率P(ξ= ).(2)依题意,ξ的所有可能取值为0, ,分别求出相应的概率,由此能求出ξ的分布列,并求其数学期望E(ξ).
【考点精析】通过灵活运用离散型随机变量及其分布列,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数.

)求的单调区间和极值;

)证明:若存在零点,则在区间上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1, ).过椭圆E内一点P(1, )的两条直线分别与椭圆交于点A、C和B、D,且满足 ,其中λ为实数.当直线AP平行于x轴时,对应的λ=

(1)求椭圆E的方程;
(2)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数与函数的图象在点(00)处有相同的切线.

Ⅰ)求a的值;

Ⅱ)设,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的n项和为Sn , 且a1=a2=1,{nSn+(n+2)an}为等差数列,则{an}的通项公式an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2(lnx+lna)(a>0).
(1)当a=1时,设函数g(x)= ,求函数g(x)的单调区间与极值;
(2)设f′(x)是f(x)的导函数,若 ≤1对任意的x>0恒成立,求实数a的取值范围;
(3)若x1 , x2∈( ,1),x1+x2<1,求证:x1x2<(x1+x24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+ }是等比数列,并求{an}的通项公式;
(2)证明: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双十一已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年双十一的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额(百元)的频率分布直方图如图所示:

1)求网民消费金额的平均值和中位数

(2)把下表中空格里的数填上,能否有90%的把握认为网购消费与性别有关;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则(  )

A. f B. f

C. f D. f

查看答案和解析>>

同步练习册答案