精英家教网 > 高中数学 > 题目详情

【题目】已知是实数,函数.

1)若,求的值及曲线在点处的切线方程;

2)求函数在区间上的最小值.

【答案】1;(2.

【解析】

1)对函数求导,由求出的值,可得出函数的解析式,再求出的值,最后利用点斜式写出所求切线的方程;

2)对函数的求导,解方程得出,考查与区间的位置关系,分析函数在区间上的单调性,可得出函数在区间上的最小值.

1,则

,则

因此,曲线在点处的切线方程为,即

2,令,得.

①当时,即当时,对任意的

此时,函数在区间上单调递增,所以

②当时,即当时,

,则;若时,.

此时,函数在区间上单调递减,在区间上单调递增,

所以,函数处取得极小值,亦即最小值,即

③当时,即当时,对任意的.

此时,函数在区间上单调递减,则.

综上所述:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2017湖北部分重点中学高三联考)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本编号从小到大依次为007,032,…,则样本中最大的编号应该为(  )

A. 483 B. 482

C. 481 D. 480

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且ABBP2,AD=AE=1,AEAB,且AEBP

(1)求平面PCD与平面ABPE所成的二面角的余弦值;

(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为参数)和圆的极坐标方程:

1)分别求直线和圆的普通方程并判断直线与圆的位置关系;

2)已知点,若直线与圆相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,己知是椭圆的左、右焦点,直线经过左焦点,且与 椭圆两点,的周长为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)是否存在直线,使得为等腰直角三角形?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中, ACBC,四边形ABED是正方形,平面ABED⊥平面ABC,F,G,H分别为BD,EC,BE的中点,求证:

(1) BC⊥平面ACD

(2)平面HGF∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆E: (a>b>0)的离心率为,焦距为2.


(1)求椭圆E的方程;

(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2.M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T.求∠SOT的最大值,并求取得最大值时直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(Ⅰ)写出曲线C的直角坐标方程;

(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,OBCD是两条互相平行的笔直公路,且均与笔直公路OC垂直(公路宽度忽略不计),半径OC1千米的扇形COA为该市某一景点区域,当地政府为缓解景点周边的交通压力,欲在圆弧AC上新增一个入口E(点E不与AC重合),并在E点建一段与圆弧相切(E为切点)的笔直公路与OBCD分别交于MN.当公路建成后,计划将所围成的区域在景点之外的部分建成停车场(图中阴影部分),设∠CONθ,停车场面积为S平方千米.

1)求函数Sfθ)的解析式,并写出函数的定义域;

2)为对该计划进行可行性研究,需要预知所建停车场至少有多少面积,请计算当θ为何值时,S有最小值,并求出该最小值.

查看答案和解析>>

同步练习册答案