精英家教网 > 高中数学 > 题目详情
15.已知二次函数f(x)=ax2+bx,若f(x+1)为偶函数,且方程f(x)=x有且只有一个实数根.求函数f(x)的解析式.

分析 求出函数f(x+1)的解析式,利用函数是偶函数求出a,b的方程,通过方程f(x)=x有且只有一个实数根,求出a,b的方程,即可得到函数的解析式.

解答 解:二次函数f(x)=ax2+bx,
f(x+1)=ax2+2ax+bx+b+1,为偶函数,可得2a+b=0.
方程f(x)=x有且只有一个实数根.
即ax2+bx=x有且只有一个实数根,可得b=1,
则a=$-\frac{1}{2}$.
二次函数f(x)=-$\frac{1}{2}$x2+x.

点评 本题考查二次函数的解析式的求法,二次函数的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{2sinx-1}$的定义域为(  )
A.[$\frac{π}{6}$,$\frac{5π}{6}$]B.[2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$](k∈Z)
C.(2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$)(k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{5π}{6}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足z(1+i)=1-i,其中i为虚数单位,则$|\overline z-1|$=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量|$\overrightarrow{e}$|=1,向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$$•\overrightarrow{e}$=1,$\overrightarrow{b}$$•\overrightarrow{e}$=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则$\overrightarrow{a}$$•\overrightarrow{b}$的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.美国篮球职业联赛(NBA)某赛季的总决赛在湖人队与活塞队之间进行,比赛采取七局四胜制.即若有一队胜四场,则此队获胜且比赛结束.因两对实力非常接近,在每场比赛中每队获胜是等可能的,据资料统计,每场比赛组织者可获门票及广告收入1000万美元.求在这次总决赛过程中.
(1)比赛5局湖人队取胜的概率;
(2)比赛组织者获得门票及广告收入ξ(万美元)的概率分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C:y2=2px(0<p<4)的焦点为F,点P为C上一动点,A(4,0),B(p,$\sqrt{2}$p),且|PA|的最小值为$\sqrt{15}$,则|BF|等于(  )
A.4B.$\frac{9}{2}$C.5D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设i是虚数单位,如果复数$\frac{a-i}{2+i}$的实部与虚部是互为相反数,那么实数a的值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数f(x)=sin2xcos2x+$\sqrt{3}{cos^2}2x-\frac{{\sqrt{3}}}{2}$的图象上所有点纵坐标不变,横坐标伸长到原来的2倍,再向右平行移动$\frac{π}{3}$个单位长度得函数g(x)图象,则以下说法正确的是(  )
A.函数g(x)在区间$[{0,\frac{π}{2}}]$上单调递增B.函数f(x)与g(x)的最小正周期均为π
C.函数g(x)在区间$[{0,\frac{π}{2}}]$上的最大值为$\frac{{\sqrt{3}}}{2}$D.函数g(x)的对称中心为$({\frac{Kπ}{2}+\frac{π}{6},0})$(K∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,某养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用).已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多的食盐,现有两个方案:一是新建仓库的底面直径比原来的大4m(高不变),二是高度增加4m(底面直径不变).
(1)分别计算按这两个方案所建仓库的体积;
(2)分别计算按这两个方案所建仓库的侧面积.

查看答案和解析>>

同步练习册答案