精英家教网 > 高中数学 > 题目详情

【题目】某部队在一次军演中要先后执行六项不同的任务,要求是:任务必须排在前三项执行,且执行任务之后需立即执行任务,任务相邻,则不同的执行方案共有______.

【答案】

【解析】

根据题意,分三种情况讨论当任务分别排在第一、第二、第三项执行,将任务捆绑作为一个整体,再和其余两项任务排列.

由题意,任务必须排在前三项执行,且执行任务之后需立即执行任务:

当任务排在第一位,排在第二位,捆绑后排列为,然后将BC作为一个整体与另两项任务全排列为,所以共有种方案;

当任务排在第二位,排在第三位,从另外两项任务中选一项任务排在第一位,则有,捆绑后排列为,后将BC作为一个整体与另一项任务全排列为,所以共有种方案;

当任务排在第三位,排在第四位,两个任务排在一二位,另外两项任务排在五六位,;两个任务排在五六位,另外两项任务排在一二位,,所以总的情况为

综上可知,共有安排方案.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高铁是一种快捷的交通工具,为我们的出行提供了极大的方便。某高铁换乘站设有编号为①,②,③,④,⑤的五个安全出口,若同时开放其中的两个安全出口,疏散名乘客所需的时间如下:

安全出口编号

①②

②③

③④

④⑤

①⑤

疏散乘客时间(s)

120

220

160

140

200

则疏散乘客最快的一个安全出口的编号是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,分别是椭圆的顶点.过坐标原点的直线交椭圆于两点,其中在第一象限.过点轴的垂线,垂足为.设直线的斜率为.

1)若直线平分线段,求的值;

2)当时,求点到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试.现从这些学生的成绩中随机抽取了50名学生的成绩,按照分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).

1)求频率分布直方图中x的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);

2)用样本估计总体,若该校共有2000名学生,试估计该校这次测试成绩不低于70分的人数;

3)若利用分层抽样的方法从样本中成绩不低于70分的学生中抽取6人,再从这6人中随机抽取3人,试求成绩在的学生至少有1人被抽到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在圆柱的底面圆上,为圆的直径.

1)求证:

2)若圆柱的体积,求异面直线所成的角(用反三角函数值表示结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点在棱.

1)求证:平面平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若对,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机公司生产某款手机,如果年返修率不超过千分之一,则生产部门当年考核优秀,现获得该公司2010-2018年的相关数据如下表所示:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

年生产量(万台)

3

4

5

6

7

7

9

10

12

产品年利润(千万元)

3.6

4.1

4.4

5.2

6.2

7.8

7.5

7.9

9.1

年返修量(台)

47

42

48

50

92

83

72

87

90

1)从该公司2010-2018年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;

2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(千万元)关于年生产量(万台)的线性回归方程(精确到0.01.部分计算结果:.

附:;线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面是菱形,交于点底面的中点,.

(1)求证: 平面

(2)求异面直线所成角的余弦值;

(3)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案