精英家教网 > 高中数学 > 题目详情

【题目】某同学在上学路上要经过三个带有红绿灯的路口.已知他在三个路口遇到红灯的概率依次是,遇到红灯时停留的时间依次是秒、秒、秒,且在各路口是否遇到红灯是相互独立的.

(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,

(2)求这名同学在上学路上因遇到红灯停留的总时间.

【答案】(1)(2)

【解析】试题分析:(1)先确定事件:“这名同学在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,再根据概率乘法求概率(2)即求数学期望:先确定随机变量取法,再分别求对应概率,最后根据数学期望公式求期望

试题解析:(1)设这名同学在上学路上到第三个路口时首次遇到红灯为事件

因为事件等于事件“这名同学在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯” ,

所以事件的概率为.

(2)记“这名同学在上学路上因遇到红灯停留的总时间”为

由题意,可得可能取的值为0,40,20,80,60,100,120,140(单位:秒).

∴即的分布列是:

所以.

答:这名同学在上学路上因遇到红灯停留的总时间为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,DP⊥x轴,点M在DP的延长线上,且|DM|=2|DP|.当点P在圆x2+y2=1上运动时.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过点T(0,t)作圆x2+y2=1的切线交曲线C于A,B两点,求△AOB面积S的最大值和相应的点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示的几何体中, 为三棱柱,且,四边形为平行四边形, .

(1)求证:

(2)若,求证:

(3)若,二面角的余弦值为若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x2+tx+2)(t为常数,且﹣2 <t<2 ).
(1)当x∈[0,2]时,求函数f(x)的最小值(用t表示);
(2)是否存在不同的实数a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数.

1时, ,若当时, 恒成立,求的最小值

2)若的图像关于对称,且时, ,求当时, 的解析式;

3时, .若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足.数列满足,且

(1)求数列的通项公式;

(2)若,数列的前项和为,对任意的,都有,求实数的取值范围;

(3)是否存在正整数,使)成等差数列,若存在,求出所有满足条件的,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知任意角θ以x轴非负半轴为始边,若终边经过点P(x0 , y0),且|OP|=r(r>0),定义sicosθ= ,称“sicosθ”为“正余弦函数”.对于正余弦函数y=sicosx,有同学得到如下结论: ①该函数是偶函数;
②该函数的一个对称中心是( ,0);
③该函数的单调递减区间是[2kπ﹣ ,2kπ+ ],k∈Z.
④该函数的图象与直线y= 没有公共点;
以上结论中,所有正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=aln(x2+1)+bx,g(x)=bx2+2ax+b,(a>0,b>0).已知方程g(x)=0有两个不同的非零实根x1 , x2
(1)求证:x1+x2<﹣2;
(2)若实数λ满足等式f(x1)+f(x2)+3a﹣λb=0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示相等函数的一组是(
A.f(x)=1,g(x)=x0?
B.f(x)=|x|,g(t)=
C.f(x)= ,g(x)=x+1?
D.f(x)=lg(x+1)+lg(x﹣1),g(x)=lg(x2﹣1)

查看答案和解析>>

同步练习册答案