精英家教网 > 高中数学 > 题目详情
如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形ABCD的边长为

(1)求证:平面ABCD丄平面ADE;
(2)求四面体BADE的体积;
(3)试判断直线OB是否与平面CDE垂直,并请说明理由.
(1)如下(2)(3)OB与平面CDE不垂直

试题分析:解:(1)∵AE⊥平面CDE,平面CDE,

∴AE⊥CD,又∵正方形ABCD,∴CD⊥AD,
,∴CD⊥平面ADE,
,∴平面ABCD丄平面ADE.
(2)为正方形,

((1)已证),
平面
∴四面体BCDE的体积,∵AE⊥平面CDE,∴AE⊥DE,在Rt△ADE中,
∴四面体ABDE的体积
(3)连结CE,由(1)知,CD⊥平面ADE,∴CD⊥DE,∴弦CE为直径,即O为CE中点.
若OB⊥平面CDE,则CD⊥CE,∴BC=BE,又AB=BC,∴AB=BE,
由(2)知,AB⊥AE,∴AB<BE,矛盾,∴OB与平面CDE不垂直.
方法2:若OB⊥平面CDE,∵AE⊥平面CDE,∴OB//AE,∴四点A、B、E、O在同一平面上,平面ABOE平面CDE=OE,又AB//CD,AB平面CDE,CD平面CDE,∴AB//平面CDE,∴AB//OE,∴CD//OE,矛盾.
点评:解决立体几何的题目,若几何体是规则的图形,则可建立空间直角坐标系,用向量去解决问题较方便。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知是不同的两条直线,是不重合的两个平面,则下列命题中为真命题的是(  )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,分别为的中点,,且

(1)证明:
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在图一所示的平面图形中,是边长为 的等边三角形,是分别以为底的全等的等腰三角形,现将该平面图形分别沿折叠,使所在平面都与平面垂直,连接,得到图二所示的几何体,据此几何体解决下面问题.

(1)求证:;
(2)当时,求三棱锥的体积
(3)在(2)的前提下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知长方体中, ,,则二面角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.

(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有
(3)当为何值时,与平面所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列关于直线l,m与平面α,β的说法,正确的是  (    )
A.若lβ且α⊥β,则l⊥αB.若l⊥β且α∥β,则l⊥α
C.若l⊥β且α⊥β,则l∥αD.若αβ=m,且lm, 则l∥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为的正方体中,分别为的中点.

(1)求直线与平面所 成 角的大小;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)试建立适当的坐标系,并写出点P、B、D的坐标;
(2)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(3)当BC边上有且仅有一个点Q使得PQ⊥QD时,求二面角Q-PD-A的大小.

查看答案和解析>>

同步练习册答案