精英家教网 > 高中数学 > 题目详情
5.已知直角△ABC中,斜边AB=6,D为线段AB的中点,P为线段CD上任意点,则($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的最小值为(  )
A.-$\frac{9}{2}$B.$\frac{9}{2}$C.-2D.2

分析 通过设|PC|=3-x,则|PD|=x,利用数量积定义可知($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$=-2x(3-x),通过配方进而即得结论.

解答 解:依题意,|CD|=3,$\overrightarrow{PA}$+$\overrightarrow{PB}$=2$\overrightarrow{PD}$,
∵P为线段CD上任意一点,
∴可设|PC|=3-x(0≤x≤3),则|PD|=x,$\overrightarrow{PD}$与$\overrightarrow{PC}$的夹角为π,
∴($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$=2$\overrightarrow{PD}$•$\overrightarrow{PC}$
=2|PD|•|PC|cosπ
=-2x(3-x)
=2$(x-\frac{3}{2})^{2}$-$\frac{9}{2}$
≥-$\frac{9}{2}$,
故选:A.

点评 本题考查了平面向量的数量积的定义及计算,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.长方形的高为1,底面积为2,垂直于底的对角面的面积是$\sqrt{5}$,则长方体的侧面积等于(  )
A.2$\sqrt{7}$B.4$\sqrt{3}$C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)对一切实数x不等式(m+1)x2-2(m+1)x-m≤0恒成立,求m的取值范围;
(2)对一切实数x不等式(m+1)x2-2(m+1)x-m<0恒成立,求m的取值范围;
(3)对一切实数x不等式(m+1)x2-2(m+1)x-m≥0恒成立,求m的取值范围;
(4)求函数y=(m+1)x2-2(m+1)x-m≥0的最值?(其中m为常数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用适当的符号(∈,∉,=,?,?)填空.
(1)-3∈{-3};
(2)∅?{2};
(3)3∉{-3,0};
(4){m,n}?{m};
(5){8,9,10}={9,10,8};
(6){梯形}?{四边形}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,分别求下列各式的值
(1)x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$ (2)x2+x-2  (3)$\frac{{x}^{\frac{3}{2}+}{x}^{-\frac{3}{2}}+2}{x+{x}^{-1}+3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若xm-yn=(x+y2)(x-y2)(x2+y4),则m=4,n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设集合A={x|x2-5x-6=0},B={x|ax2-x+6=0},若A?B,试确定实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\sqrt{x-1}$•$\sqrt{4-x}$+3的定义域是(  )
A.{x|1<x<4}B.{x|1<x≤4}C.{x|1≤x≤4}D.{x|1≤x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.将下列直线方程化为一般式方程:
(1)y=$\frac{1}{2}$x-2;(2)y-2=-$\frac{3}{4}$(x+1)

查看答案和解析>>

同步练习册答案