精英家教网 > 高中数学 > 题目详情

【题目】据IEC(国际电工委员会)调查显示,小型风力发电项目投资较少,且开发前景广阔,但受风力自然资源影响,项目投资存在一定风险.根据测算,风能风区分类标准如下:

风能分类

一类风区

二类风区

平均风速m/s

8.5~10

6.5~8.5

假设投资A项目的资金为x(x≥0)万元,投资B项目资金为y(y≥0)万元,调研结果是:未来一年内,位于一类风区的A项目获利30%的可能性为0.6,亏损20%的可能性为0.4;位于二类风区的B项目获利35%的可能性为0.6,亏损10%的可能性是0.1,不赔不赚的可能性是0.3.
(1)记投资A,B项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望Eξ,Eη;
(2)某公司计划用不超过100万元的资金投资于A,B项目,且公司要求对A项目的投资不得低于B项目,根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和z=Eξ+Eη的最大值.

【答案】
(1)解:∵投资A项目的资金为x(x≥0)万元,

未来一年内,位于一类风区的A项目获利30%的可能性为0.6,

亏损20%的可能性为0.4,

∴A项目投资利润ξ的分布列:

ξ

0.3x

﹣0.2x

P

0.6

0.4

∴Eξ=0.18x﹣0.08x=0.1x.

∵投资B项目资金为y(y≥0)万元,

未来一年内,位于二类风区的B项目获利35%的可能性为0.6,

亏损10%的可能性是0.1,不赔不赚的可能性是0.3.

∴B项目投资利润η的分布列:

η

0.35y

﹣0.1y

0

P

0.6

0.1

0.3

∴∴η=0.21y﹣0.01y=0.2y


(2)解:由题意知x,y满足的约束条件为

由(1)知,z=Eξ+Eη=0.1x+0.2y,

当x=50,y=50,∴z取得最大值15.

∴对A、B项目各投资50万元,可使公司获得最大利润,最大利润是15万元


【解析】(1)由已知条件,利用概率分布列的性质和计算公式能求出能求出随机变量ξ与η的分布列和期望Eξ,Eη.(2)由题意列出x,y满足的约束条件,由此估计一年后两个项目的平均利润之和z=Eξ+Eη的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+(y﹣1)2=1上存在4个点到直线x+y﹣m=0(m∈R)的距离等于1﹣
(1)求m的取值范围;
(2)判断圆C与圆D:x2+y2﹣2mx=0的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x﹣cos2x+1,下列结论中错误的是(
A.f(x)的图象关于( ,1)中心对称
B.f(x)在( )上单调递减
C.f(x)的图象关于x= 对称
D.f(x)的最大值为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x|x<2},集合N={x|0<x<1},则下列关系中正确的是(
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α为锐角,且 ,函数 ,数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)求证:数列{an+1}为等比数列;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,G是AB延长线上的一点,GCD是圆O的割线,过点G作AG的垂线,交直线AC于点E,交直线 AD于点F,过点G作圆O的切线,切点为H.
(1)求证:C,D,E,F四点共圆;
(2)若GH=8,GE=4,求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求经过点A(-1,-2)且到原点距离为1的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F,F,左右顶点分别为A,B,且|F1F2|=4,|AB|=4
(1)求椭圆的方程;
(2)过F1的直线l与椭圆C相交于M,N两点,若△MF2N的面积为 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ (m∈R)在区间[1,e]取得最小值4,则m=

查看答案和解析>>

同步练习册答案