精英家教网 > 高中数学 > 题目详情

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20171月至201912月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是(  )

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位数为30万人

D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

【答案】C

【解析】

利用折线图的性质直接求解.

解:由20171月至201912月期间月接待游客量的折线图得:

中,年接待游客量虽然逐月波动,但总体上逐年增加,故正确;

中,各年的月接待游客量高峰期都在8月,故正确;

中,20171月至12月月接待游客量的中位数小于30万人,故错误;

中,各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故正确.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线处的切线方程;

(2)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点ABCA1B1C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知射线lθ与曲线Ct为参数)相交于AB两点.

1)写出射线l的参数方程和曲线C的直角坐标方程;

2)求线段AB中点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,求的单调区间;

2)若函数处取得极大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面五边形ABCDE中,ABCE,且AE2AEC60°CDEDcosEDC.将△CDE沿CE折起,使点D移动到P的位置,且AP得到四棱锥PABCE.

(1)求证:AP⊥平面ABCE

(2)记平面PAB与平面PCE相交于直线l,求证:ABl.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一款智能学习APP,学习内容包含文章学习和视频学习两类,且这两类学习互不影响.已知该APP积分规则如下:每阅读一篇文章积1分,每日上限积5分;观看视频累计3分钟积2分,每日上限积6分.经过抽样统计发现,文章学习积分的概率分布表如表1所示,视频学习积分的概率分布表如表2所示.

(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;

(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为,求的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,过点于点,以为折痕把折起,当几何体的的体积最大时,则下列命题中正确的个数是( )

∥平面

与平面所成的角等于与平面所成的角

所成的角等于所成的角

A.B.C.D.

查看答案和解析>>

同步练习册答案