【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,第五组,下图是按上述分组方法得到的频率分布直方图.
(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;
(2)请估计学校1800名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数、中位数、平均数和方差.
【答案】(1)11;(2)576;(3)详见解析.
【解析】(1)样本在这次百米测试中成绩优秀的人数0.22×50=11(人)
(2)学校1800名学生中,成绩属于第四组的人数0.32×1800=576(人)
(3)由图可知众数落在第三组[15,16),是15+162=15.5
因为数据落在第一、二组的频率=1×0.06+1×0.16=0.22<0.5
数据落在第一、二、三组的频率=1×0.06+1×0.16+1×0.38=0.6>0.5
所以中位数一定落在第三组[15,16)中.
假设中位数是x,所以1×0.06+1×0.16+(x-15)×0.38=0.5
解得中位数x=29919≈15.7368≈15.74
平均数:
科目:高中数学 来源: 题型:
【题目】假设小明订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到,小明离家的时间在早上7:00—8:00之间,则他在离开家之前能拿到报纸的概率( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
(月) | |||||
(千克) |
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图.
(2)请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归直线方程.
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).
(参考公式: , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的定义域为,若存在闭区间[m,n] D,使得函数满足:①在[m,n]上是单调函数;②在[m,n]上的值域为[2m,2n],则称区间[m,n]为的“倍值区间”.下列函数中存在“倍值区间”的有 .(填上所有正确的序号)
①;
②;
③;
④.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(﹣x)成立,则称此函数具有“P(a)性质”.给出下列命题:
①函数y=sinx具有“P(a)性质”;
②若奇函数y=f(x)具有“P(2)性质”,且f(1)=1,则f(2015)=1;
③若函数y=f(x)具有“P(4)性质”,图象关于点(1,0)成中心对称,且在(﹣1,0)上单调递减,则y=f(x)在(﹣2,﹣1)上单调递减,在(1,2)上单调递增;
④若不恒为零的函数y=f(x)同时具有“P(0)性质”和“P(3)性质”,函数y=f(x)是周期函数.
其中正确的是 (写出所有正确命题的编号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线交轴于,且,为坐标原点.
(1)求椭圆的方程;
(2)设是椭圆的上顶点,过点分别作直线交椭圆于两点,设这两条直线的斜率分别为,且,证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西且与该港口相距20海里的处,并以30海里/时的航行速度沿正东方向匀速行驶,假设该小船沿直线方向以海里/时的航行速度匀速行驶,经过小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com