精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$
(1)求证:f(x)为增函数;
(2)若f(x)为奇函数,求f(x)的值域;
(3)在(2)成立的情况下,若g(x)=xf(x)-2m+5,在定义域内总有g(x)≥0成立,求m的取值范围.

分析 (1)根据函数单调性的定义进行证明,
(2)根据函数奇偶性的性质,结合指数函数单调性的性质进行求解.
(3)根据指数函数单调性的性质进行求解.

解答 解:(1)∵f(x)的定义域为R,不妨设:x1<x2
则$f({x_1})-f({x_2})=a-\frac{2}{{{2^{x_1}}+1}}-a+\frac{2}{{{2^{x_2}}+1}}$=$\frac{{2•({2^{x_1}}-{2^{x_2}})}}{{(1+{2^{x_1}})(1+{2^{x_2}})}}$,
∵x1<x2,∴${2^{x_1}}-{2^{x_2}}<0,(1+{2^{x_1}})(1+{2^{x_2}})>0$,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),所以不论a为何实数f(x)总为增函数.…(3分)
(2)∵f(x)为奇函数,∴f(-x)=-f(x),
即$a-\frac{2}{{{2^{-x}}+1}}=-a+\frac{2}{{{2^x}+1}}$,解得:a=1.∴$f(x)=1-\frac{2}{{{2^x}+1}}$.…(5分)
$f(x)=1-\frac{2}{{{2^x}+1}}$,
∵2x+1>1,∴$0<\frac{2}{{{2^x}+1}}<2$,∴$-2<-\frac{2}{{{2^x}+1}}<0$,∴-1<f(x)<1
∴f(x)的值域为(-1,1).…(8分)
(3)在定义域内总有g(x)≥0成立,即xf(x)≥2m-5在R内总成立,
结合(2)当x≥0时,2x+1≥2,$0<\frac{2}{{{2^x}+1}}≤1$$0≤1-\frac{2}{{{2^x}+1}}<1$,即f(x)≥0,
∴xf(x)≥0
同理:当x<0时,f(x)<0,∴xf(x)>0,
∴xf(x)≥0在R内总成立,
∴0≥2m-5,$m≤\frac{5}{2}$
∴当$m≤\frac{5}{2}$时,定义域内总有g(x)≥0成立.  …(12分)

点评 本题主要考查函数奇偶性和单调性的判断和证明,利用定义法以及转化法是解决本题的关键.综合考查函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.抛物线y2=2px上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为(  )
A.4B.9C.10D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a>0,a≠1,设p:函数y=ax在x∈(-∞,+∞)上单调递减,q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.若“p∧q”为假命题,“p∨q”为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,某地要在矩形区域OABC内建造三角形池塘OEF,E,F分别在AB,BC边上,OA=5米,OC=4米,∠EOF=$\frac{π}{4}$,设CF=x,AE=y.
(1)试用解析式将y表示成x的函数;
(2)求三角形池塘OEF面积S的最小值及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}为公差不为零的等差数列,a1=1,且a1,a3,a21成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=3n-1,求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设$f(x)=kx+m,g(x)=lnx-\frac{1}{x}$.
(1)若函数f(x)-g(x)在区间(0,+∞)上减函数,求k的取值范围;
(2)当k=2时,若函数f(x)的图象是函数g(x)的图象的切线,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知cos2α=$\frac{4}{5}$,求sin2α,tan2α以及cos4α+sin4α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“a<2”是“实系数一元二次方程x2+ax+1=0有虚根”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知f(x)=$\frac{\sqrt{2}}{{2}^{x}+\sqrt{2}}$
(1)求函数y=f(x)的值域;
(2)判断并证明y=f(x)的单调性;
(3)计算f(-1)+f(2)、f(0)+f(1)的值,由此概括出函数y=f(x)所具有的一个性质并加以证明.

查看答案和解析>>

同步练习册答案