【题目】如图,在四棱锥中,底面为边长为的正方形,.
(1)求证:;
(2)若,分别为,的中点,平面,求三棱锥的体积.
【答案】(1)详见解析;(2).
【解析】
试题本题主要考查线面垂直的判定与性质、锥体的体积等基础知识,考查学生的分析问题解决问题的能力、空间想象能力、逻辑推理能力、计算能力.第一问,利用线面垂直的判定定理,先证出平面,利用线面垂直的性质定理得,在中再证明;第二问, 用体积转化法,将转化为,证明出是锥体的高,再利用锥体的个数求解.
试题解析:(Ⅰ)连接交于点,
因为底面是正方形,
所以且为的中点.
又
所以平面,
由于平面,故.
又,故.
(Ⅱ)设的中点为,连接,∥=,
所以为平行四边形,∥,
因为平面,
所以平面,所以,的中点为,
所以.
由平面,又可得,
又,又
所以平面
所以,又,
所以平面
(注意:没有证明出平面,直接运用这一结论的,后续过程不给分)
故三棱锥D-ACE的体积为.
科目:高中数学 来源: 题型:
【题目】已知四棱锥,,,,点在底面上的射影是的中点,.
(1)求证:直线平面;
(2)若,、分别为、的中点,求直线与平面所成角的正弦值;
(3)当四棱锥的体积最大时,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从1到9的九个数字中取三个偶数四个奇数,试问:
(1)能组成多少个没有重复数字的七位数?
(2)在(1)中的七位数中三个偶数排在一起的有几个?
(3)在(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?
(4)在(1)中任意两偶然都不相邻的七位数有几个?
(答题要求:先列式,后计算 , 结果用具体数字表示.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(,)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )
A. 这种抽样方法是一种分层抽样
B. 这种抽样方法是一种系统抽样
C. 这五名男生成绩的方差大于这五名女生成绩的方差
D. 该班级男生成绩的平均数小于该班女生成绩的平均数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于, 两点,直线, 分别与轴交于点, .
(Ⅰ)求椭圆的方程;
(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形中,,,过点作的垂线,交的延长线于点,.连结,交于点,如图1,将沿折起,使得点到达点的位置,如图2.
(1)证明:平面平面;
(2)若为的中点,为的中点,且平面平面,求三棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com