精英家教网 > 高中数学 > 题目详情
2.已知复数z=$\frac{1+i}{2-i}$(其中i是虚数单位),则复数z在坐标平面对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则及其几何意义即可得出.

解答 解:复数z=$\frac{1+i}{2-i}$=$\frac{(1+i)(2+i)}{(2-i)(2+i)}$=$\frac{1+3i}{5}$,则复数z在坐标平面对应的点$(\frac{1}{5},\frac{3}{5})$在第一象限.
故选:A.

点评 本题考查了复数的运算法则及其几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,AB为☉O的直径,直线CD与☉O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.求证:∠FEB=∠CEB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-kx+k-1.
(1)当k为何值时,不等式f(x)≥0恒成立;
(2)当k∈R时,解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知某三棱锥的三视图如图所示,这这个三棱锥的体积是$\frac{64}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=|xex|,且方程f2(x)+2af(x)+1=0(a∈R)有四个实数根,则a的取值范围为(  )
A.(-∞,-$\frac{{e}^{2}+1}{2e}$)B.(-$\frac{{e}^{2}+1}{e}$,-2)C.(-2,0)D.($\frac{{e}^{2}+1}{2e},+∞$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,3),则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.7B.8C.(3,5)D.(2,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题P“双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上任意一点Q到直线l1:bx+ay=0,l2:bx-ay=0的距离分别记作d1,d2则d1,d2为定值”是真命题
(1)求出d1•d2的值
(2)已知直线l1,l2关于y轴对称且使得椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上任意点到l1,l2的距离d1,d2满足${{d}_{1}}^{2}+{{d}_{2}}^{2}$为定值,求l1,l2的方程
(3)已知直线m与(2)中某一条直线平行(或重合)且与椭圆C交于M,N两点,求|OM|+|ON|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:$\underset{lim}{n→∞}$[$\frac{1}{1×6}$+$\frac{1}{6×11}$+$\frac{1}{11×16}$+…+$\frac{1}{(5n-4)(5n+1)}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列{(-1)n-1n2}的前n项之和为$\left\{\begin{array}{l}{-\frac{n(n+1)}{2},n为偶数}\\{-\frac{n(n-1)}{2}+(-1)^{n-1}{n}^{2},n为奇数}\end{array}\right.$.

查看答案和解析>>

同步练习册答案