精英家教网 > 高中数学 > 题目详情
2.函数f(x)=1-3sin2x的最小正周期为(  )
A.πB.C.D.

分析 利用降幂公式化简函数f(x),求出它的最小正周期即可.

解答 解:函数f(x)=1-3sin2x=1-3×$\frac{1-cos2x}{2}$=$\frac{3}{2}$cos2x-$\frac{1}{2}$,
所以f(x)的最小正周期为T=$\frac{2π}{2}$=π.
故选:A.

点评 本题考查了三角函数的化简与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.比较2x2+2x-5与x2+x-6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程是$\left\{\begin{array}{l}x=m+tcosα\\ y=tsinα\end{array}\right.(t为参数,0≤α<π)$,射线$θ=ϕ,θ=ϕ+\frac{π}{4},θ=ϕ-\frac{π}{4}$与曲线C1交于极点O外的三点A,B,C.
(1)求$\frac{|OB|+|OC|}{|OA|}$的值;
(2)当$ϕ=\frac{π}{12}$时,B,C两点在曲线C2上,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3-3x.
(Ⅰ)求函数f(x)在[-2,1]上的最大值和最小值.
(Ⅱ)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过椭圆$\frac{{y}^{2}}{4}$+x2=1的上焦点F2作一条斜率为-2的直线与椭圆交于A,B两点,O为坐标原点,则△AOB的面积为$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知与椭圆$\frac{{x}^{2}}{4}$+y2=1共焦点且过点Q(2,1)的双曲线方程是 (  )
A.x2-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{2}$-y2=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.曲线的切线方程与直线6x-3y+1=0相互垂直,其中x的取值为非正数且曲线的方程为f(x)=2x3+x2-x(x2-1),则曲线的切线方程为(  )
A.2x+y+1=0B.2x+y-1=0C.2x-y-1=0D.2x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.椭圆$\frac{y^2}{16}+\frac{x^2}{9}=1$的焦点为F1、F2,P为椭圆上不同于长轴端点的一点,则△PF1F2的周长为8+2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.减函数f(x)=3ax-2a+1,若存在x0∈(-1,1),使f(x0)=0,则实数a的取值范围是(  )
A.-1<a<$\frac{1}{5}$B.a<-1或a>$\frac{1}{5}$C.a>$\frac{1}{5}$D.-1<a<0

查看答案和解析>>

同步练习册答案